[1] 崔利论,袁文平,张海成.土壤侵蚀对陆地生态系统碳源汇的影响[J].北京师范大学学报:自然科学版,2016,52(6):816-822.
Cui L L, Yuan W P, Zhang H C. Soil erosion effect on terrestial ecosystem carbon source and sink[J]. Journal of Beijing Normal University:Natural Science,2016,52(6):816-822.
[2] Berhe A A, Barnes R T, Six J, et al. Role of soil erosion in biogeochemical cycling of essential elements: carbon, nitrogen, and phosphorus[M]. State of California Palo Alto: Annual Reviews, 2018:521-548.
[3] 冯棋,汪亚峰,杨磊,等.土壤侵蚀对陆地碳源汇的作用机制研究进展[J].土壤通报,2018,49(6):1505-1512.
Feng Q, Wang Y F, Yang L, et al. Research progress on mechanisms of soil erosion on terrestrial carbon source and sink[J]. Chinese Journal of Soil Science,2018,49(6):1505-1512.
[4] 朱冰冰,霍云霈,周正朝.黄土高原坡沟系统植被格局对土壤侵蚀影响研究进展[J].中国水土保持科学(中英文),2021,19(4):149-156.
Zhu B B, Huo Y P, Zhou Z C. Research progress in impact of vegetation pattern on soil erosion in the slope-gully system of the Loess Plateau[J]. Science of Soil and Water Conservation,2021,19(4):149-156.
[5] 曾茂林,朱小勇,康玲玲,等.水土流失区淤地坝的拦泥减蚀作用及发展前景[J].水土保持研究,1999,6(2):127-134.
Zeng M L, Zhu X Y, Kang L L, et al. Effects of sediment reduction and erosion control and development prospects of warping dam in water and soil loss areas[J]. Research of Soil and Water Conservation,1999,6(2):127-134.
[6] 刘蓓蕾.黄土高原淤地坝建设与地形特征的响应关系研究[D].西安:西安理工大学,2021.
Liu B L. Study on the response of check dam construction and topographic features on the Loess Plateau[D]. Xi'an: Xi'an University of Technology,2021.
[7] Yao Y F, Song J X, Wei X R. The fate of carbon in check dam sediments[J]. Earth-Science Reviews,2022,224, doi:10.1016/j.earscirev.2021.103889
[8] Wang Y F, Chen L D, Gao Y, et al. Carbon sequestration function of check-dams:A case study of the Loess Plateau in China[J]. AMBIO,2014,43(7):926-931.
[9] Li M M, Zhang X C, Pang G W, et al. The estimation of soil organic carbon distribution and storage in a small catchment area of the Loess Plateau [J]. CATENA,2013,101:11-16.
[10] Lü Y H, Sun R H, Fu B J, et al. Carbon retention by check dams:Regional scale estimation[J]. Ecological Engineering, 2012,44:139-146.
[11] Holz M, Augustin J. Erosion effects on soil carbon and nitrogen dynamics on cultivated slopes: A meta-analysis[J]. Geoderma, 2021,397 doi:10.1016/j.geoderma.2021.115045.
[12] 王云强,张兴昌,韩凤朋.黄土高原淤地坝土壤性质剖面变化规律及其功能探讨[J].环境科学,2008,29(4):1020-1026.
Wang Y Q, Zhang X C, Han F P. Profile variability of soil properties in check dam on the Loess Plateau and its functions[J]. Environmental Science, 2008,29(4):1020-1026.
[13] 张维俊,李双异,徐英德,等.土壤孔隙结构与土壤微环境和有机碳周转关系的研究进展[J].水土保持学报,2019,33(4):1-9.
Zhang W J, Li S Y, Xu Y D, et al. Advances in research on relationships between soil pore structure and soil miocroenvironment and organic carbon turnover[J]. Journal of Soil and Water Conservation,2019,33(4):1-9.
[14] Blume O, Guitard E, Crann C, et al. Relationships between carbon age and CO2 efflux in agricultural and drainage ditch soils using the thermonuclear bomb pulse[J]. Vadose Zone Journal, 2022,21(5).doi:10,1002/vzj2.2020.
[15] Wiaux F, Vanclooster M, Vanoost K. Vertical partitioning and controlling factors of gradient-based soil carbon dioxide fluxes in two contrasted soil profiles along a loamy hillslope[J]. Biogeosciences, 2015,12(15):4637-4649.
[16] 惠波,李鹏,张维,等.王茂沟流域淤地坝系土壤颗粒与有机碳分布特征研究[J].水土保持研究,2015,22(4):1-5.
Hui B, Li P, Zhang W, et al. Distribution charateristics of soil particles and organic carbon on check-dam system in Wangmaogou watershed[J]. Research of Soil and Water Conservation,2015,22(4):1-5.
[17] 王震,刘颖,杨明义,等.坝地剖面泥沙有机碳分解特征及其影响因素[J].应用生态学报,2022,33(10):2635-2643.
Wang Z, Liu Y, Yang M Y, et al. Characteristics and factors influencing organic carbon decomposition in sediment in check dams[J]. Chinese Journal of Applied Ecology,2022,33(10):2635-2643.
[18] 韩书成,谢永生,濮励杰.黄土高原沟壑区小流域土地利用特征变化分析:以长武王东沟为例[J].干旱区资源与环境,2006,20(4):73-77.
Han S C, Xie Y S, Pu L J. Analysis on land use characteristic changes in regional gully watershed on Loess Plateau: A case study of Wangdonggou watershed[J]. Journal of Arid Land Resources and Environment,2006,20(4):73-77.
[19] 孙棋棋.侵蚀环境中土壤微生物群落变化特征[D].北京:中国科学院大学(中国科学院教育部水土保持与生态环境研究中心),2018.
Sun Q Q. Variations of soil microbial communities under erosion environment[D]. Beijing:University of Chinese Academy of Sciences(Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education),2018.
[20] 薛凯,杨明义,张风宝,等.利用淤地坝泥沙沉积旋廻反演小流域侵蚀历史[J].核农学报,2011,25(1):115-120.
Xue K, Yang M Y, Zhang F B, et al. Investigating soil erosion history of a small watershed using sediment couplet in a dam[J]. Journal of Nuclear Agricultural Sciences,2011,25(1):115-120.
[21] 李勉,杨剑锋,侯建才,等.黄土丘陵区小流域淤地坝记录的泥沙沉积过程研究[J].农业工程学报,2008,24(2):64-69.
Li M, Yang J F, Hou J C, et al. Sediment deposition process for a silt dam in a small watershed in Loess Hilly Region[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(2):64-69.
[22] Blagodatskaya E, Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:critical review[J]. Biology and Fertility of Soils, 2008,45(2):115-131.
[23] Zhu Z. Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies[J]. Soil Biology and Biochemistry, 2022,169, doi:10,1016/j. soilbio.2022.108669.
[24] 黄双双,霍常富,解宏图,等.表层和下层免耕黑土有机碳矿化速率及激发效应[J].应用生态学报,2019,30(6):1877-1884.
Huang S S, Huo C F, Xie H T, et al. Soil organic carbon mineralization and priming effects in the topsoil and subsoil under no-tillage black soil[J]. Chinese Journal of Applied Ecology,2019,30(6):1877-1884.
[25] Lu M K, Xie J S, Wang C, et al. Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China[J]. Biology and Fertility of Soils, 2015,51(7):857-867.
[26] Blagodatskaya, E. V, Blagodatsky, S. A, Anderson, T. H., et al. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies[J]. Applied Soil Ecology, 2007,37(1-2):95-105.
[27] Wang H, Boutton T W, Xu W H, et al. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes[J]. Scientific Reports, 2015,5(1):10102.
[28] 张天霖,蔡章林,赵厚本,等.13C脉冲标记法研究非正常凋落物对土壤有机碳的激发效应[J].生态环境学报,2021,30(9):1797-1804.
Zhang T L, Cai Z L, Zhao H B, et al. Priming effect on soil organic carbon by abnormal litter following 13C pulse-labeling[J]. Ecology and Environmental Sciences,2021,30(9):1797-1804.
[29] Maier M, Schack-Kirchner H, Hildebrand E E, et al. Soil CO2 efflux vs. soil respiration:Implications for flux models[J]. Agricultural and Forest Meteorology, 2011,151(12):1723-1730.
[30] Wordell-Dietrich P, Wotte A, Rethemeyer J, et al. Vertical partitioning of CO2 production in a forest soil[J]. Biogeosciences, 2020, 17(24): 6341-6356.
[31] 赵佳玉,肖薇,张弥,等.通量梯度法在温室气体及同位素通量观测研究中的应用与展望[J].植物生态学报,2020,44(4):305-317.
Zhao J Y, Xiao W, Zhang M, et al. Applications and prospect of the flux-gradient method in measuring the greenhouse gases and isotope fluxes[J]. Chinese Journal of Plant Ecology,2020,44(4):305-317.
收稿日期:2022-12-03 修回日期:2023-02-21
资助项目:中国科学院“西部之光”人才培养计划“西部青年学者”项目(XAB2020YN03); 陕西省引进高层次人才专项(F2020221001)
第一作者:张辉(1998—),男,河南南阳人,硕士,主要从事土壤侵蚀与碳循环研究。E-mail:huizhanghg@163.com
通信作者:胡亚鲜(1986—),女,河南郑州人,博士,副研究员,主要从事土壤侵蚀与碳循环研究。E-mail:huyaxian@nwafu.edu.cn