[1]王 瑛,刘美君,郭海宁,等.减雨处理环境下刺槐冠层气孔导度变化特征[J].水土保持研究,2023,30(05):209-216.[doi:10.13869/j.cnki.rswc.2023.05.054.]
 WANG Ying,LIU Meijun,GUO Haining,et al.Canopy Stomatal Conductance of Robinia pseudoacacia Under Rainfall Exclusion Treatment[J].Research of Soil and Water Conservation,2023,30(05):209-216.[doi:10.13869/j.cnki.rswc.2023.05.054.]
点击复制

减雨处理环境下刺槐冠层气孔导度变化特征

参考文献/References:

[1] 李仙岳,杨培岭,任树梅,等.樱桃冠层导度特征及模拟[J].生态学报,2010,30(2):300-308.
[2] 张浩,王新平,张亚峰,等.干旱荒漠区不同生活型植物生长对降雨量变化的响应[J].生态学杂志,2015,34(7):1847-1853.
[3] 刘文娜,贾剑波,余新晓,等.华北山区侧柏冠层气孔导度特征及其对环境因子的响应[J].应用生态学报,2017,28(10):3217-3226.
[4] 孙林,管伟,王彦辉,等.华北落叶松冠层平均气孔导度模拟及其对环境因子的响应[J].生态学杂志,2011,30(10):2122-2128.
[5] 赵楠,朱高峰,张扬,等.干旱绿洲区葡萄冠层上下方叶片气孔导度特征[J].兰州大学学报:自然科学版,2021,57(4):510-517.
[6] 曹庆平,赵平,倪广艳,等.华南荷木林冠层气孔导度对水汽压亏缺的响应[J].生态学杂志,2013,32(7):1770-1779.
[7] 许文滔,赵平,王权,等.基于树干液流测定值的马占相思(Acacia mangium)冠层气孔导度计算及数值模拟[J].生态学报,2007,27(10):4122-4131.
[8] Deng J, Yao J, Zheng X, et al. Transpiration and canopy stomatal conductance dynamics of Mongolian pine plantations in semiarid deserts, Northern China[J]. Agricultural Water Management, 2021,249(8):106806.
[9] Lyu J, He Q Y, Chen Q W, et al. Distinct transpiration characteristics of black locust plantations acclimated to semiarid and subhumid sites in the Loess Plateau, China[J]. Agricultural Water Management, 2022,262:107402.
[10] 陈胜楠,孔喆,陈立欣,等.半干旱区城市环境下油松林分蒸腾特征及其影响因子[J].生态学报,2020,40(4):1269-1280.
[11] 朱丽薇,赵平,蔡锡安,等.荷木人工林蒸腾与冠层气孔导度特征及对环境因子的响应[J].热带亚热带植物学报,2010,18(6):599-606.
[12] 颜成正,郑文革,贾剑波,等.控水条件下侧柏冠层气孔导度对土壤水的响应[J].应用生态学报,2020,31(12):4017-4026.
[13] 韩磊,何俊,齐拓野,等.宁夏河东沙区侧柏冠层气孔导度对环境因子的响应及其模拟[J].生态学杂志,2018,37(9):2862-2868.
[14] 胡彦婷,赵平,牛俊峰,等.3种植被恢复树种的冠层气孔导度特征及其对环境因子的敏感性[J].应用生态学报,2015,26(9):2623-2631.
[15] 赵平,饶兴权,马玲,等.马占相思林冠层气孔导度对环境驱动因子的响应[J].应用生态学报,2006,17(7):1149-1156.
[16] 吉珍霞,侯青青,裴婷婷,等.黄土高原植被物候对季节性干旱的敏感性响应[J].干旱区地理,2022,45(2):557-565.
[17] 单长卷,梁宗锁,韩蕊莲,等.黄土高原陕北丘陵沟壑区不同立地条件下刺槐水分生理生态特性研究[J].应用生态学报,2005,16(7):1205-1212.
[18] 姜萍,潘新民,曾雪莹.中国不同农业区气温和降水时空演变格局分析[J].水土保持研究,2020,27(4):270-278.
[19] LüY, Fu B, Feng X, et al. A policy-driven large scale ecological restoration:quantifying ecosystem services changes in the Loess Plateau of China[J]. Plos One, 2012,7(2):e31782.
[20] 潘迪,毕华兴,次仁曲西,等.晋西黄土区典型森林植被耗水规律与环境因子关系研究[J].北京林业大学学报,2013,35(4):16-20.
[21] 王百田,张府娥.黄土高原主要造林树种苗木蒸腾耗水特性[J].南京林业大学学报:自然科学版,2003,46(6):93-97.
[22] 茹桃勤,李吉跃,孔令省,等.刺槐耗水研究进展[J].水土保持研究,2005,12(2):135-140.
[23] 袁瀛,惠养瑜,吴永麟,等.黄土丘陵区刺槐生长的影响因子研究[J].水土保持研究,1996,3(3):146-154.
[24] Wang Z H, Miao Y F, Li S X. Effect of ammonium and nitrate nitrogen fertilizers on wheat yield in relation to accumulated nitrate at different depths of soil in drylands of China[J]. Field Crops Research, 2015,183:211-224.
[25] 何秋月.黄土高原半湿润区刺槐人工林蒸腾耗水特征对降雨减少的响应[D].杨凌:西北农林科技大学,2020.
[26] Campbell G, Norman J. An introduction to environmental biophysics[M].New York: Springer,1998.50-51.
[27] Wilson K B, Hanson P J, Mulholland P J, et al. A comparison of methods for determining forest evapotranspiration and its components:sap-flow, soil water budget, eddy covariance and catchment water balance[J]. Agricultural and Forest Meteorology, 2001,106(2):153-168.
[28] James S A, Clearwater M J, Meinzer F C, et al. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood[J]. Tree Physiology, 2002,22(4):277-283.
[29] Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiology, 1987,3(4):309-320.
[30] Schwärzel K, Zhang L, Strecker A, et al. Improved water consumption estimates of black locust plantations in China's Loess Plateau[J]. Forests, 2018,9(4):201.
[31] Clearwater M J, Meinzer F C, Andrade J L, et al. Potential errors in measurement of nonuniform sap flow using heat dissipation probes[J]. Tree Physiology, 1999,19(10):681-687.
[32] Kumagai T O, Aoki S, Shimizu T, et al. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed[J]. Tree Physiology, 2007,27(2):161-168.
[33] Köstner B M M, Schulze E D, Kelliher F M, et al. Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus:an analysis of xylem sap flow and eddy correlation measurements[J]. Oecologia, 1992,91(3):350-359.
[34] Oren R, Sperry J, Katul G, et al. Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit[J]. Plant, Cell & Environment, 1999,22(12):1515-1526.
[35] 陈胜楠,陈左司南,张志强.北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J].植物生态学报,2021,45(12):1329-1340.
[36] 赵平,饶兴权,马玲,等.基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度[J].植物生态学报,2006,30(4):655-665.
[37] 曾小敏,赵平,欧阳磊,等.荷木对干湿季土壤水分的利用和适应性调节[J].热带亚热带植物学报,2017,25(2):105-114.
[38] Granier A, Breda N. Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements[J]. Annales Des Sciences Forestières, 1996,53(2):537-546.
[39] Tang J, Bolstad P V, Ewers B E, et al. Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States[J]. Journal of Geophysical Research:Biogeosciences, 2006,111(G2):G02009.
[40] Jasechko S, Sharp Z D, Gibson J J, et al. Terrestrial water fluxes dominated by transpiration[J]. Nature, 2013,496(7445):347-350.
[41] Wehr R, Commane R, Munger J W, et al. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake[J]. Biogeosciences, 2017,14(2):389-401.
[42] Novick K A, Ficklin D L, Stoy P C, et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes[J]. Nature Climate Change, 2016,6(11):1023-1027.
[43] Song L, Zhu J, Zheng X, et al. Comparison of canopy transpiration between Pinus sylvestris var. mongolica and Pinus tabuliformis plantations in a semiarid sandy region of Northeast China[J]. Agricultural and Forest Meteorology, 2022,314:108784.
[44] Ouyang L, Zhao P, Rao X, et al. Interpreting the water use strategies of plantation tree species by canopy stomatal conductance and its sensitivity to vapor pressure deficit in South China[J]. Forest Ecology and Management, 2022,505:119940.
[45] Ewers B, Oren R, Kim H S, et al. Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crowns[J]. Plant, Cell & Environment, 2007,30(4):483-496.

相似文献/References:

[1]贺振伟,郭东罡,白中科,等.两种水土生态恢复模式下刺槐种群数量特征与空间格局研究[J].水土保持研究,2012,19(04):48.
 HE Zhen-wei,GUO Dong-gang,BAI Zhong-ke,et al.Numeric Character and Spatial Pattern of Robinia pseudoacacia L. Population at Two Kinds of Recovery Modes[J].Research of Soil and Water Conservation,2012,19(05):48.
[2]李俊辉,李秧秧.立地条件和树龄对刺槐叶形态及生理特性的影响[J].水土保持研究,2012,19(04):176.
 LI Jun-hui,LI Yang-yang.Effects of Site and Tree Age on Leaf Morpho-physiological Traits of Black Locust[J].Research of Soil and Water Conservation,2012,19(05):176.
[3]王忠林,薛智德.黄土高原刺槐林生长适宜生态区划[J].水土保持研究,1994,1(03):43.
 Wang Zhonglin,Xue Zhide.Ecological dividing of growing fitted area of Robinia pseudoacacia forest in Loess plateau[J].Research of Soil and Water Conservation,1994,1(05):43.
[4]王愿昌.南小河沟流域山坡地刺槐林生产潜力分析[J].水土保持研究,1998,5(04):89.
 Wang Yuanchang.The Growth Potential of Locust Forest Growth in South Xiaohegou Watershed[J].Research of Soil and Water Conservation,1998,5(05):89.
[5]茹桃勤,李吉跃,孔令省,等.刺槐耗水研究进展[J].水土保持研究,2005,12(02):135.
 RU Tao-qin,LI Ji-yue,KONG Ling-sheng,et al.Review on the Research of Water Consumption Characteristic of Robinia psedudoacia[J].Research of Soil and Water Conservation,2005,12(05):135.
[6]王迪海,赵忠,薛文鹏,等.水分生态环境对刺槐细根垂直分布的影响[J].水土保持研究,2005,12(05):200.
 WANG Di-hai,ZHAO Zhong,XUE Wen-peng,et al.Effect of Soil Water Environment on Vertical Fine Root Distribution of Robinia pseudoacacia[J].Research of Soil and Water Conservation,2005,12(05):200.
[7]茹桃勤.刺槐无性系苗期叶水势和相对含水量与土壤含水量之间关系研究[J].水土保持研究,2006,13(04):22.
 RU Tao-qin.The Relation Among the Water Potential, Relative Water Content and Soil Water Content of Black Locust Clones Seedlings[J].Research of Soil and Water Conservation,2006,13(05):22.
[8]刘江华,刘国彬,陈淑芸.刺槐林地土壤水分与林下植物生物量的关系[J].水土保持研究,2009,16(03):57.
 LIU Jiang-hua,LIU Guo-bin,CHEN Shu-yun.Relationship Between Soil Moisture of Robinia pseudoacacia Forests and Aboveground Biomass of Understory Vegetation[J].Research of Soil and Water Conservation,2009,16(05):57.
[9]马义虎,陈丽华,余新晓.晋南人工刺槐林需水量计算及分析[J].水土保持研究,2005,12(06):89.
 MA Yi-hu,CHEN Li-hua,YU Xin-xiao.The Calculation and Analysis of Artificial Acacia Plantation’s Water Demand in the South of Shanxi Province[J].Research of Soil and Water Conservation,2005,12(05):89.
[10]步兆东,高大鹏,王文智,等.油松刺槐造林成活生长最低土壤水分指标的测定[J].水土保持研究,2003,10(04):170.
 BU Zhao-dong,GAO Da-peng,WANG Wen-zhi,et al.Survey of the Minimum Water Containing Index in Soil for Survival and Growth of Pinus tabulaeformis Carr and Robinia pseudo-acacia[J].Research of Soil and Water Conservation,2003,10(05):170.

备注/Memo

收稿日期:2022-08-22 修回日期:2022-09-12
资助项目:国家重点研发计划项目“丘陵沟壑区水土保持林结构改善与功能提升技术和示范”(2017YFC0504601)
第一作者:王瑛(1996—),女,甘肃省白银人,硕士研究生,主要从事森林蒸腾耗水研究。E-mail:wangying2020@nwafu.edu.cn
通信作者:杜盛(1965—),男,内蒙古鄂尔多斯人,博士,研究员,主要从事森林生态系统及蒸腾耗水研究。E-mail:shengdu@ms.iswc.ac.cn

更新日期/Last Update: 2023-08-10