[1]尚天赦,王 飞,戈文艳.基于GLDAS-2数据的中国极端降水事件时空变异性研究[J].水土保持研究,2023,30(01):248-255.[doi:10.13869/j.cnki.rswc.20220522.001]
 SHANG Tianshe,WANG Fei,GE Wenyan.Research on the Spatiotemporal Variability of Extreme Precipitation Events in China Based on GLDAS-2 Data[J].Research of Soil and Water Conservation,2023,30(01):248-255.[doi:10.13869/j.cnki.rswc.20220522.001]
点击复制

基于GLDAS-2数据的中国极端降水事件时空变异性研究

参考文献/References:

[1] Sixth Assessment Report[EB/OL].
[2] Trenberth K E. Atmospheric moisture residence times and cycling: Implications for Rainfall Rates and Climate Change[J]. Climatic Change, 1998,39(4):667-694.
[3] Mackay A. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group Ⅱ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[J]. Journal of Environmental Quality, 2008,37(6):2407.
[4] Alexander L V, Zhang X, Peterson T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research Atmospheres,2006,111(D5):1-22.
[5] Goswami B N, Venugopal V, Sengupta D, et al. Increasing Trend of Extreme Rain Events Over India in a Warming Environment[J]. Science, 2007,314(5804):1442-1445.
[6] 赵安周,刘宪锋,朱秀芳,等.1965—2013年黄土高原地区极端气温趋势变化及空间差异[J].地理研究,2016,35(4):639-652.
[7] 郑景云,郝志新,方修琦,等.中国过去2000年极端气候事件变化的若干特征[J].地理科学进展,2014,33(1):3-12.
[8] Liu Min et al. Changes in Precipitation and Drought Extremes over the Past Half Century in China[J]. Atmosphere, 2019, 10(4):203-203.
[9] 卢珊,胡泽勇,王百朋,等.近56年中国极端降水事件的时空变化格局[J].高原气象,2020,39(4):683-693.
[10] 陈星任,杨岳,何佳男,等.近60年中国持续极端降水时空变化特征及其环流因素分析[J].长江流域资源与环境,2020,29(9):2068-2081.
[11] 贺冰蕊,翟盘茂.中国1961—2016年夏季持续和非持续性极端降水的变化特征[J].气候变化研究进展,2018,14(5):437-444.
[12] 孔锋,史培军,方建,等.全球变化背景下极端降水时空格局变化及其影响因素研究进展和展望[J].灾害学,2017,32(2):165-174.
[13] 孙鹏,肖名忠,张强,等.水文气象极值事件研究进展[J].武汉大学学报:理学版,2018,64(1):28-36.
[14] Zhang Y, Hong Y, Wang X, et al. Hydrometeorological Analysis and Remote Sensing of Extremes: Was the July 2012 Beijing Flood Event Detectable and Predictable by Global Satellite Observing and Global Weather Modeling Systems?[J]. Journal of Hydrometeorology, 2015,16(1):381-395.
[15] Basheer M, Elagib N A. Performance of satellite-based and GPCC 7.0 rainfall products in an extremely data-scarce country in the Nile Basin[J]. Atmospheric Research, 2018,215:128-140.
[16] Gao F, Zhang Y, Chen Q, et al. Comparison of two long-term and high-resolution satellite precipitation datasets in Xinjiang, China[J]. Atmospheric Research, 2018,212:150-157.
[17] Usman M, Nichol J E, Ibrahim A T, et al. A spatio-temporal analysis of trends in rainfall from long term satellite rainfall products in the Sudano Sahelian zone of Nigeria[J]. Agricultural and Forest Meteorology, 2018, 260-261:273-286.
[18] 杜懿,王大洋,阮俞理,等.中国地区近40年降水结构时空变化特征研究[J].水力发电,2020,46(8):19-23.
[19] 孙赫,苏凤阁.雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用[J].地理科学进展,2020,39(7):1126-1139.
[20] 王文,汪小菊,王鹏. GLDAS月降水数据在中国区的适用性评估[J].水科学进展,2014,25(6):769-778.
[21] 王娟敏,孙娴,孙睿,等.2000—2016年中国再分析辐射资料与观测值对比[J].热带气象学报,2020,36(6):734-743.
[22] 王文,崔巍,王鹏. GLDAS Noah模型水文产品与中国地面观测及卫星观测数据的对比[J].水电能源科学,2017,35(5):1-6.
[23] Zeqiang C, Yi Z, Gaoyun S, et al. Spatiotemporal characteristics and estimates of extreme precipitation in the Yangtze River Basin using GLDAS data[J]. International Journal of Climatology, 2021,41:E1812-E1830.
[24] Wang A, Zeng X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J].Journal of Geophysical Research, 2012,117(D5):D05102.
[25] Rui H, Beaudoing H. Readme document for global land data assimilation system version 2(GLDAS-2)products[J]. Ges Disc., 2011,2011:1-22.
[26] 中国科学院资源环境科学与数据中心[EB/OL].
[27] 焦俏.基于微波遥感反演的黄土高原表层土壤水分变化及其对植被恢复的响应[D].陕西杨凌:西北农林科技大学,2016.
[28] 焦俏,王飞,李锐,等.ERS卫星反演数据在黄土高原近地表土壤水分中的应用研究[J].土壤学报,2014,51(6):1388-1397.
[29] 中国气象报社.暴雨定义及分类_中国气象局[EB/OL].
[30] Dunn R J H, Alexander L V, Donat M G, et al. Development of an Updated Global Land In Situ-Based Data Set of Temperature and Precipitation Extremes:HadEX3[J]. Journal of Geophysical Research-Atmospheres, 2020:e2019JD032263.
[31] Donat M G, Peterson T C, Brunet M, et al. Changes in extreme temperature and precipitation in the Arab region:long‐term trends and variability related to ENSO and NAO[J]. International Journal of Climatology, 2014,34(3):591-592.
[32] Rao K K, Patwardhan S K, Kulkarni A, et al. Projected changes in mean and extreme precipitation indices over India using PRECIS[J]. Global and Planetary Change, 2014,113:77-90.
[33] de Los Milagros Skansi M, Brunet M, SigróJ, et al. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America[J]. Global and Planetary Change, 2013,100(1):295-307.
[34] 尹红,孙颖.基于ETCCDI指数2017年中国极端温度和降水特征分析[J].气候变化研究进展,2019,15(4):363-373.
[35] 任福民,高辉,刘绿柳,等.极端天气气候事件监测与预测研究进展及其应用综述[J].气象,2014,40(7):860-874.
[36] 卢芹芹,秦年秀,汪军能,等.近60年来百色地区极端降水事件的时空节律变化特征[J].水土保持研究,2021,28(3):216-222.
[37] 袁文德,郑江坤,董奎.1962—2012年西南地区极端降水事件的时空变化特征[J].资源科学,2014,36(4):766-772.
[38] 李志,郑粉莉,刘文兆.1961—2007年黄土高原极端降水事件的时空变化分析[J].自然资源学报,2010,25(2):291-299.
[39] 顾西辉,张强,孔冬冬.中国极端降水事件时空特征及其对夏季温度响应[J].地理学报,2016,71(5):718-730.
[40] 陈晓燕,尚可政,王式功,等.近50年中国不同强度降水日数时空变化特征[J].干旱区研究,2010,27(5):766-772.
[41] Wang H, Chen Y, Chen Z. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960—2010[J]. Hydrological Processes, 2013,27(12):1807-1818.
[42] 汪宝龙,张明军,魏军林,等.西北地区近50 a气温和降水极端事件的变化特征[J].自然资源学报,2012,27(10):1720-1733.
[43] 宋世凯.全球变暖背景下1960—2014年中国降水时空变化特征[D].乌鲁木齐:新疆大学,2017.
[44] 郑丽娜.近55 a中国西北地区夏季降水的时空演变特征[J].海洋气象学报,2018,38(2):50-59.
[45] 王怀军,潘莹萍,陈忠升.1960—2014年淮河流域极端气温和降水时空变化特征[J].地理科学,2017,37(12):1900-1908.
[46] 倪楠.中国降水的时空变化特征研究[D].北京:对外经济贸易大学,2020.

备注/Memo

收稿日期:2021-09-04 修回日期:2021-12-02
资助项目:国家自然科学基金面上项目“黄土高原刺槐林地根系挤压对土壤物理性状的影响”(42177344),“次降雨特征与植被变化对半干旱黄土区土壤水分补充的协同影响”(41771558); 中国科学院国际伙伴计划“气候变化对阿根廷水土资源影响评估与综合适应对策研究”(16146KYSB20200001)
第一作者:尚天赦(1995—),男,河南省汝阳人,硕士研究生,研究方向为水土保持效益评价。E-mail:sts489520189@qq.com
通信作者:王飞(1971—),男,陕西省户县人,研究员,博士生导师,主要从事水土保持环境效应评价与流域综合管理研究。E-mail:wafe@ms.iswc.ac.cn
戈文艳(1990—),女,四川遂宁人,助理研究员,主要从事遥感研究。E-mail:gewenyan@nwafu.edu.cn

更新日期/Last Update: 2023-01-10