[1]杨晓柳,王 平,高大威,等.1979-2014年秦巴山区MSWEP降水数据精度评估及变化特征分析[J].水土保持研究,2020,27(06):146-152.
 YANG Xiaoliu,WANG Ping,GAO Dawei,et al.Accuracy Evaluation and Analysis on Change Characteristics of MSWEP Precipitation Data in Qinbashan Mountains Area from 1979 to 2014[J].Research of Soil and Water Conservation,2020,27(06):146-152.
点击复制

1979-2014年秦巴山区MSWEP降水数据精度评估及变化特征分析

参考文献/References:

[1] Huffman G J, Adler R F, Bolvin D T, et al. The TRMM Multi-Satellite Precipitation Analysis(TMPA)[J]. Satellite Rainfall Applications for Surface Hydrology, 2010,8(1):38-62.
[2] Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM Multisatellite Precipitation Analysis(TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Satellite Rainfall Applications for Surface Hydrology, 2007,8(3):38-55.
[3] Immerzeel W W, Rutten M M, Droogers P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula[J]. Remote Sensing of Environment, 2009,113(2):362-370.
[4] Goovaerts P. Geostatistical approaches for incroporating elevation into the spatial interpolation of rainfull[J]. Journal of Hydrology, 2000,228(1):113-129.
[5] Li M, Shao Q X. An improved statistical approach to merge satellite rainfall estimates and raingauge data[J]. Journal of Hydrology, 2010,385:51-64.
[6] Goodrich D C, Faures J M, Woolhiser D A, et al. Measurements and analysis of small-scale convective storm rainfall variability[J]. Journal of Hydrology, 1995,17(3):283-308.
[7] Tobin K J, Bennett M E. Adjusting satellite precipitation data to facilitate hydrologic modeling[J]. Journal of Hydrometeorology, 2010,11(4):966-978.
[8] Duan Z, Bastiaanssen W G M, First results from Version7 TRMM 3B43 precipitation product in combination with a new downscaling calibration procedure[J]. Remote Sensing of Environment, 2013,131(5):1-13.
[9] Nair A, Indu J. Performance assessment of Multi-Source Weighted-Ensemble Precipitation(MSWEP)product over India[J]. Climate, 2017,5(1):2-22.
[10] 魏风英.现代气候统计诊断与预测技术[M].北京:气象出版社,1999.
[11] 孟清,白红英,郭少壮.基于Anusplin秦岭地区近50多年来的降水时空变化[J].水土保持研究,2020,27(2):1-7.
[12] 费明哲,张增信,原立峰,等.TRMM降水产品在鄱阳湖流域的精度评价[J].长江流域资源与环境,2015,24(8):1322-1330.
[13] Beck H E, Van D A I J M, Vincenzo L, et al. MSWEP: 3-hourly 0.25° global gridded precipitation(1979—2015)by merging gauge, satellite, and reanalysis data[J]. Hydrology & Earth System Sciences, 2017,21(1):589-615.
[14] Sun Q H, Miao C Y, Duan Q Y, et al. A review of global precipitation data sets: data sourees, estimation, and intercomparisons[J]. Reviews of Geophysics, 2018,56(1):79-107.
[15] Jiang D J, Zhang H, Li R Z. Performance evaluation of TMPA version 7 estimates for precipitation and its extremes in Circum Bohai-Sea region, China [J]. Theoretical and Applied Climatology, 2017, 130(3/4): 1021-1033.
[16] Sahlu D, Moges S A, Nikolopoulos E I, et al. Evaluation of high-resolution multisatellite and reanalysis rainfall products over east Africa[J]. Advances in Meteorology, 2017,206(5):1-14.
[17] 王圆圆,郭徵,李贵才,等.基于广义加性模型估算1979—2014年三峡库区降水及其特征分析[J].地理学报,2017,72(7):1207-1220.
[18] 邓越,蒋卫国,王晓雅.MSWEP降水产品在中国大陆区域的精度评估[J].水利水电快报,2018,29(4):455-464.
[19] 章金城,周文佐.2006—2015年秦巴山区植被光合有效辐射吸收比例的时空变化特征[J].生态学杂志,2019,38(5):1453-1463.
[20] 原立峰,张增信,刘星飞,等.鄱阳湖流域近49年降雨序列一致性检验与分析[J].安徽农业科学,2013,41(2):732-735.
[21] 费明哲,张增信,原立峰,等. TRMM降水产品在鄱阳湖流域的精度评价[J].长江流域资源与环境,2015,24(8):1322-1330.
[22] 刘洁,夏军,邹磊,等.多卫星遥感降水数据在塔里木河流域的适用性分析[J].南水北调与水利科技,2018,16(5):1-8.
[23] 原立峰,杨桂山,李恒鹏,等.近50年来鄱阳湖流域降雨多时间尺度变化规律研究[J].长江流域资源与环境,2014,23(3):434-440.
[24] 季漩,罗毅. TRMM降水数据在中天山区域的精度评估分析[J].干旱区地理,2013,36(2):253-262.
[25] 金秋,张增信,黄钰瀚,等.基于TRMM卫星产品的长江流域降水精度评估[J].人民长江,2017,48(19):48-52.
[26] 沈彬,李新功.塔里木河流域TRMM降水数据精度评估[J].干旱区地理,2015,38(4):703-712.
[27] 魏风英.现代气候统计诊断与预测技术[M].北京:气象出版社,1999.
[28] Pandy D K, Kumar A, Mohanty S. Recent trends in sediment load of the tropical(Peninsular)river basins of India[J]. Global and Planetary Change, 2011,75(3):108-118.
[29] Burn D H, Elnur M A H. Detection of hydrologic trends and variability[J]. Journal of Hydrology, 2002,255(4):107-122.
[30] 王文圣,丁晶,李跃清.水文小波分析[M].北京:化学工业出版社,2005.

相似文献/References:

[1]张善红,白红英,齐贵增,等.基于多元线性回归模型和Anusplin的秦巴山区≥10℃积温空间模拟比较[J].水土保持研究,2022,29(01):184.
 ZHANG Shanhong,BAI Hongying,QI Guizeng,et al.Spatial Simulation of Active Accumulated Temperature≥10℃in Qinling-Daba Mountains Based on Anusplin and Multiple Linear Regression Model[J].Research of Soil and Water Conservation,2022,29(06):184.
[2]杨卫丽,谭景柏,范 兵,等.山区产业生态系统适应性与资源环境承载力的时空耦合协调关系——以秦巴山区81个区县为例[J].水土保持研究,2022,29(06):363.
 YANG Weili,TAN Jingbai,FAN Bing,et al.Spatial-Temporal Coupling Coordination Relationship Between Industrial Ecosystem Adaptability and Resource Environmental Bearing Capacity in County-level Mountain Region[J].Research of Soil and Water Conservation,2022,29(06):363.

备注/Memo

收稿日期:2019-11-29 修回日期:2020-01-06
资助项目:国家自然科学基金“森林植被影响岩溶水源地产流功能的观测研究”(41262013)
第一作者:杨晓柳(1994—),女,云南保山人,硕士研究生,研究方向为山地环境与自然灾害。E-mail:2495750785@qq.com
通信作者:王平(1965—),男,云南昭通人,副教授,主要从事土壤地理与区域自然地理研究。E-mail:ynwangping@163.com

更新日期/Last Update: 2020-10-20