[1]乔磊磊,李袁泽,翟珈莹,等.黄土丘陵区植被恢复模式对土壤碳组分的影响[J].水土保持研究,2019,26(05):14-20.
 QIAO Leilei,LI Yuanze,ZHAI Jiaying,et al.Effects of Vegetation Restoration Pattern on Soil Carbon Fractions in Loess Hilly Region[J].Research of Soil and Water Conservation,2019,26(05):14-20.
点击复制

黄土丘陵区植被恢复模式对土壤碳组分的影响

参考文献/References:

[1] 徐广平,李艳琼,沈育伊,等.桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J].环境科学,2019,40(3):1491-1503.
[2] 刘梦云.黄土台塬区植被恢复对土壤碳组分影响研究[D].陕西杨凌:西北农林科技大学,2011.
[3] 姚小萌.子午岭植被恢复下土壤碳库演变特征及影响机理研究[D].西安:陕西师范大学,2016.
[4] 赵发珠.黄土丘陵区退耕植被土壤C, N, P化学计量学特征与土壤有机碳库及组分的响应机制[D].陕西杨凌:西北农林科技大学,2015.
[5] 张宏.黄土高原不同植被区侵蚀环境下有机碳及其组分分布特征[D].陕西杨凌:西北农林科技大学,2013.
[6] 董扬红.陕北黄土高原不同植被类型土壤活性有机碳组分及酶活性特征研究[D].陕西杨凌:西北农林科技大学,2015.
[7] 马芊红,张光辉,耿韧,等.黄土高原纸坊沟流域不同土地利用类型土壤质量评价[J].水土保持研究,2018,25(4):30-35,42.
[8] 姜培坤,周国模,徐秋芳.雷竹高效栽培措施对土壤碳库的影响[J].林业科学,2002,38(6):6-11.
[9] 李酉开.土壤农业化学常规分析方法[M].北京:科学出版社,1983.
[10] Blair G J, Lefroy R D B, Lise L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995,46(7):1459-1466.
[11] Chan K Y, Bowman A, Oates A. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys[J]. Soil Science, 2001,166(1):61-67.
[12] 孙彩丽,刘国彬,马海龙,等.不同沙生植被土壤易氧化有机碳组分及其含量的差异[J].草地报,2012,20(5):863-869.
[13] Ghani A, Dexter M, Perrott K W. Hot-water extractable carbon in soils:A sensitive measurement for determining impacts of fertilisation, grazing and cultivation[J]. Soil Biology & Biochemistry, 2003,35(9):1231-1243.
[14] Sparling G, Vojvodic-Vukovic M, Schipper L A. Hot-water-soluble C as a simple measure of labile soil organic matter:The relationship with microbial biomass C[J]. Soil Biology & Biochemistry, 1998,30(10/11):1469-1472.
[15] Safarik I, Santruckova H. Direct determination of total soil carbohydrate content[J]. Plant and Soil, 1992,143(1):109-114.
[16] Graham M H, Haynes R J, Meyer J H. Soil organic matter content and quality:Effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in south africa[J]. Soil Biology & Biochemistry, 2002,34(1):93-102.
[17] Haynes R J. Labile organic matter fractions and aggregate stability under short-term, grass-based leys[J]. Soil Biology & Biochemistry, 1999,31(13):1821-1830.
[18] Wu J, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J]. Soil Biology & Biochemistry, 1990,22(8):1167-1169.
[19] Banger K, Toor G S, Biswas A, et al. Soil organic carbon fractions after 16-years of applications of fertilizers and organic manure in a typic rhodalfs in semi-arid tropics[J]. Nutrient Cycling in Agroecosystems, 2010,86(3):391-399.
[20] Gil-Sotres F, Trasar-Cepeda C, Leiros M C, et al. Different approaches to evaluating soil quality using biochemical properties[J]. Soil Biology & Biochemistry, 2005,37(5):877-887.
[21] Balesdent J, Besnard E, Arrouays D, et al. The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence[J]. Plant and Soil, 1998,201(1):49-57.
[22] Covaleda S, Gallardo J F, García-Oliva F, et al. Land-use effects on the distribution of soil organic carbon within particle-size fractions of volcanic soils in the Transmexican Volcanic Belt(Mexico)[J]. Soil Use & Management, 2011,27(2):186-194.
[23] Slobodian N, Van Rees K, Pennock D. Cultivation-induced effects on belowground biomass and organic carbon[J]. Soil Science Society of America Journal, 2002,66(3):924-930.
[24] Haynes R J. Size and activity of the soil microbial biomass under grass and arable management[J]. Biology and Fertility of Soils, 1999,30(3):210-216.
[25] Shepherd T G, Saggar S, Newman R H, et al. Tillage-induced changes to soil structure and organic carbon fractions in new zealand soils[J]. Australian Journal of Soil Research, 2001,39(3):465-489.
[26] Gregorich E G, Greer K J, Anderson D W, et al. Carbon distribution and losses:Erosion and deposition effects[J]. Soil and Tillage Research, 1998,47(3):291-302.
[27] Polyakov V, Lal R. Modeling soil organic matter dynamics as affected by soil water erosion[J]. Environment International, 2004,30(4):547-556.
[28] Fu X, Shao M, Wei X, et al. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China[J]. Geoderma, 2010,155(1):31-35.
[29] Preger A C, Koesters R, Du Preez C C, et al. Carbon sequestration in secondary pasture soils:A chronosequence study in the south african highveld[J]. European Journal of Soil Science, 2010,61(4):551-562.
[30] Chen L, Gong J, Fu B, et al. Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of china[J]. Ecological Research, 2007,22(4):641-648.
[31] Poeplau C, Don A. Sensitivity of soil carbon stocks and fractions to different land-use changes across Europe[J]. Geoderma, 2013,192(1):189-201.
[32] Magid J, Bruun S, Neergaard A D. Relating soil carbon fractions to land use in sloping uplands in northern Thailand[J]. Agriculture Ecosystems & Environment, 2009,131(3):229-239.
[33] Culman S W, Snapp S S, Freeman M A, et al. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management[J]. Soil Science Society of America Journal, 2012,76(2):494-504.
[34] Zhang S, Wen J, Li T, et al. Soil carbon fractions of restored lands in Liusha River Valley, Sichuan[J]. Ecological Engineering, 2012,40:27-36.
[35] Strosser E. Methods for determination of labile soil organic matter:An overview[J]. Journal of Agrobiology, 2010,27(2):49-60.
[36] Moharana P C, Sharma B M, Biswas D R, et al. Long-term effect of nutrient management on soil fertility and soil organic carbon pools under a 6-year-old pearl millet-wheat cropping system in an inceptisol of subtropical india[J]. Field Crops Research, 2012,136:32-41.
[37] Mosquera O, Buurman P, Ramirez B L, et al. Carbon replacement and stability changes in short-term silvo-pastoral experiments in Colombian Amazonia[J]. Geoderma, 2012,170:56-63.
[38] Jiang P K, Qiu-Fang X U. Abundance and dynamics of soil labile carbon pools under different types of forest vegetation[J]. Pedosphere, 2006,16(4):505-511.

相似文献/References:

[1]李晶,高照良,张小娟,等.宝牛高速公路路域植被恢复效果调查分析[J].水土保持研究,2012,19(06):100.
 LI Jing,GAO Zhao-liang,ZHANG Xiao-juan,et al.Investigation and Assessment on Vegetation Restoration along the Baoniu Highway[J].Research of Soil and Water Conservation,2012,19(05):100.
[2]许浩,蒋齐,潘占兵,等.黄土丘陵区降雨、土壤水分和苗木成活率的关系[J].水土保持研究,2012,19(05):202.
 XU Hao,JIANG Qi,PAN Zhan-bing,et al.Relationship of Rainfall, Soil Moisture and Seedling Survival Rate in Loess Hilly Region[J].Research of Soil and Water Conservation,2012,19(05):202.
[3]赵发珠,韩新辉,杨改河,等.黄土丘陵区不同退耕还林地土壤有机碳、氮密度变化特征[J].水土保持研究,2012,19(04):43.
 ZHAO Fa-zhu,HAN Xin-hui,YANG Gai-he,et al.Change Characteristics of Density of Soil Organic Carbon and Nitrogen under Land Shifted into Forestland in Hilly Loess Region[J].Research of Soil and Water Conservation,2012,19(05):43.
[4]陈宇,焦菊英,王宁,等.黄土丘陵区撂荒地不同侵蚀带土壤种子库特征[J].水土保持研究,2012,19(01):1.
 CHEN Yu,JIAO Ju-ying,WANG Ning,et al.Characteristics of Soil Seed Banks under Different Erosion Zones on Abandoned Land in the Hilly-gullied Loess Plateau[J].Research of Soil and Water Conservation,2012,19(05):1.
[5]查轩,唐克丽,白红英.植被恢复对土壤抗侵蚀特性影响的研究[J].水土保持研究,1993,(01):37.
 Zha Xuan,Tang Keli,Bai Hongying.The Effect of Vegetation Restoration on Properties of Soil Resistance in Erosion[J].Research of Soil and Water Conservation,1993,(05):37.
[6]郑粉莉,张科利,唐克丽,等.植被破坏与恢复对坡面浅沟侵蚀影响的研究[J].水土保持研究,1993,(01):54.
 Zheng Fenli,Zhang Keli,Tang Keli,et al.Impact of Vegetation Destruction and Restoration on Shallow Gully Erosion[J].Research of Soil and Water Conservation,1993,(05):54.
[7]邹厚远,关秀琦,鲁子瑜,等.黄土丘陵区造林技术研究[J].水土保持研究,1994,1(03):48.
 Zou Houyuan,Guan Xiuqi,Lu Ziyu,et al.The Research Report on Foresting Technique in the Loess Hilly Region[J].Research of Soil and Water Conservation,1994,1(05):48.
[8]关秀琦,邹厚远,鲁子瑜,等.黄土高原草地生产持续发展研究──Ⅰ.沙打旺人工草地衰退后的草种更替[J].水土保持研究,1994,1(03):56.
 Guan Xiuqi,Zou Houyuan,Lu Ziyu,et al.Study on the Sustainable Development of the Grassland Production in Loess Plateau──Ⅰ. Grass Varieties Alternation in the Declined Artifical Grassland of Astragalus adsurgens[J].Research of Soil and Water Conservation,1994,1(05):56.
[9]关秀琦,邹厚远,鲁子瑜,等.黄土高原草地持续发展研究──Ⅲ.补播柠条和兴安胡枝子建立永久放牧草地试验[J].水土保持研究,1994,1(03):65.
 Guan Xiuqi,Zou Houyuan,Lu Ziyu,et al.Study on the Sustainable Development of the Grassland Production in Loess Plateau──Ⅲ. The Experiment of Builiding Permanent Grassland for herding by reseeding Caragana korshinskii and Lespedeza daharica[J].Research of Soil and Water Conservation,1994,1(05):65.
[10]程积民.宁南黄土丘陵区立体型高产半人工草地研究[J].水土保持研究,1996,3(01):38.
 Cheng Jimin.A Study on Establishing Stereo Style’s Semi-artificial Pasture with High Yeild in Southern Ningxia Loess Hilly Area[J].Research of Soil and Water Conservation,1996,3(05):38.
[11]张勇,杜华栋,张振国,等.黄土丘陵区自然植被恢复下土壤微生物学质量演变特征[J].水土保持研究,2014,21(01):6.
 ZHANG Yong,DU Hua-dong,ZHANG Zhen-guo,et al.Evolution Characteristics of Soil Biological Property in Loess Hilly Region under Natural Vegetation Restoration[J].Research of Soil and Water Conservation,2014,21(05):6.
[12]栗妍,魏玮,邱扬,等.黄土丘陵小流域植被恢复驱动下的土壤养分特征[J].水土保持研究,2014,21(06):115.
 LI Yan,WEI Wei,QIU Yang,et al.Effects of Different Vegetation Restoration Types on Soil Nutrient Properties in the Hill and Gully Region of Loess Plateau[J].Research of Soil and Water Conservation,2014,21(05):115.

备注/Memo

收稿日期:2018-11-04;改回日期:2018-11-27。
基金项目:“十三五”国家重点研发计划(2016YFC0501707);科技基础性工作专项(2014FY210100)
作者简介:乔磊磊(1995-),男,河南省洛阳市洛宁县人,硕士研究生,主要从事微生物生态与恢复生态学。E-mail:qiaoleilei0118@163.com
通讯作者:刘国彬(1958-),男,陕西省榆林市人,研究员,主要从事水土保持与流域管理研究。E-mail:gbliu@ms.iswc.ac.cn

更新日期/Last Update: 1900-01-01