WU Yang,LI Qiang,XU Hongwei,et al.Effects of Nitrogen Addition on Characteristic of Glomalin in the Soil of Bothriochloa ischaemum[J].,2018,25(05):61-65,71.





Effects of Nitrogen Addition on Characteristic of Glomalin in the Soil of Bothriochloa ischaemum
吴阳1 李强2 徐红伟3 乔磊磊4 李袁泽5 薛萐13
1. 西北农林科技大学 资源环境学院, 陕西 杨凌 712100;
2. 榆林学院 陕西省陕北矿区生态修复重点实验室, 陕西 榆林 719000;
3. 中国科学院 水利部 水土保持研究所 黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西 杨凌 712100
WU Yang1 LI Qiang2 XU Hongwei3 QIAO Leilei4 LI Yuanze5 XUE Sha13
1. College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China;
2. Shaanxi Key Laboratory of Ecological Restoration in Shaanbei Mining Area, Yulin University, Yulin, Shaanxi 719000, China;
3. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
glomalin-related soil proteinnitrogen additionBothriochloa ischaemum
球囊霉素或球囊霉素类相关蛋白(glomalin-related soil protein,GRSP)是丛枝菌根真菌(AMF)分泌的一种疏水性蛋白。为研究氮沉降对土壤GRSP的影响,选取了黄土高原典型地带性植物白羊草(Bothriochloa ischaemum)为研究对象,采用小车模拟小区试验,通过氮添加来模拟氮沉降,共设置3个氮添加浓度N1(2.5 g/m2)、N2(5 g/m2)和N3(10 g/m2),以裸地(LD)和不添加氮处理CK(0 g/m2)为对照。结果表明:不同浓度氮添加后,土壤中总球囊霉素(Total glomalin,T-GRSP)含量呈现先增加后降低的趋势,但变化未达到显著水平,而易提取球囊霉素(Easily extractable glomalin,EE-GRSP)的含量变化在N3时显著降低(p<0.05)。冗余分析表明SOC,C/N、地下地上生物量是影响土壤GRSP的主要因素。研究从土壤GRSP角度分析了氮添加对土壤活性物质的影响,有利于揭示未来全球氮沉降背景下土壤质量的变化,加深对土壤生态变化过程的认识。
Glomalin or glomalin-related soil protein is the hydrophobic protein secreted by AMF.In order to study the effects of nitrogen deposition on soil GRSP of typical Bothriochloa ischaemum community in the Loess Plateau, simulated nitrogen deposition was conducted with the method of nitrogen addition into plots.The four nitrogen addition gradients were CK (0 g/m2), N1 (2.5 g/m2), N2 (5 g/m2) and N3 (10 g/m2), and the bare land (LD) was also selected as the control.The results showed that the content of total glomalin in soil increased firstly and then decreased, but the change did not reach to the significant level, and the contents of easily extractable glomalin decreased significantly in N3 (P < 0.05).Redundancy analysis showed that SOC, C/N, the below-ground biomass and the under-ground biomass were the main factors affecting soil GRSP.In this study, the effect of nitrogen addition on soil active substance was analyzed from the perspective of soil GRSP, which is helpful to reveal the change of soil quality under the background of global nitrogen deposition in the future and deepen the understanding of soil ecological change process.


[1] Holland E A, Dentener F J, Braswell B H, et al. Contemporary and pre-industrial global reactive nitrogen budgets[J]. Biogeochemistry, 1999,46(1/3):7-43.
[2] Jefferies R L, Maron J L. The embarrassment of richesatmospheric deposition of nitrogen and community and ecosystem processes[J]. Trends in Ecology & Evolution, 1997,12(2):74-78.
[3] Galloway J N, Cowling E B. Reactive nitrogen and the world:200 years of change[C]. International Nitrogen Conference, 2002:64-71.
[4] Phoenix G K, Emmett B A, Britton A J, et al. I-mpacts of atmospheric nitrogen deposition:responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments[J]. Global Change Biology, 2012,18(4):1197-1215.
[5] Stark S, Hilli S, Willför S, et al. Composition of lipophilic compounds and carbohydrates in the accumulated plant litter and soil organic matter in boreal forests[J]. European Journal of Soil Science, 2012,63(1):65-74.
[6] Zhong Y, Yan W, Shangguan Z. Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies[J]. Soil Biology & Biochemistry, 2015,91:151-159.
[7] Egertonwarburton L M, Allen E B. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient.[J]. Ecological Applications, 2000,10(2):484-496.
[8] Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001,413(6853):297-299.
[9] Treseder K K. A meta-analysis of mycorrhizal r-esponses to nitrogen, phosphorus, and atmospheric CO2 in field studies[J]. New Phytologist, 2004,164(2):347-355.
[10] Bradley K, Drijber R A, Knops J. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi[J]. Soil Biology & Biochemistry, 2006,38(7):1583-1595.
[11] Van Diepen L T A, Lilleskov E A, Pregitzer K S, et al. Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions[J]. New Phytologist, 2007,176(1):175-183.
[12] Van Diepen L T A, Lilleskov E A, Pregitzer K S. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests[J]. Molecular Ecology, 2011,20(4):799-811.
[13] Zheng Y, Kim Y C, Tian X F, et al. Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow.[J]. Fems Microbiology Ecology, 2015,89(3):594-605.
[14] Lv F, Xue S, Wang G, et al. Nitrogen addition shifts the microbial community in the rhizosphere of Pinus tabuliformis in Northwestern China[J]. PloS one, 2017,12(2):e0172382.
[15] Fitter A H, Helgason T, Hodge A. Nutritional exchanges in the arbuscular mycorrhizal symbiosis:Implications for sustainable agriculture[J]. Fungal Biology Reviews, 2011,25(1):68-72.
[16] Smith S E, Read D J. Mycorrhizal symbiosis[M]. New York:Academic Press, 2010.
[17] Hernández-Hernández R M, Roldán A, Caravaca F, et al. Arbuscular mycorrhizal fungal assemblages in biological crusts from a Neotropical savanna are not related to the dominant perennial Trachypogon[J]. Science of the Total Environment, 2017,575:1203-1210.
[18] Li H, Smith S E, Holloway R E, et al. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses[J]. New Phytologist, 2006,172(3):536-543.
[19] Subramanian K S, Santhanakrishnan P, Balasubramanian P. Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress[J]. Scientia Horticulturae, 2006,107(3):245-253.
[20] De l P E, Echeverría S R, Wh V D P, et al. Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria[J]. New Phytologist, 2010,169(4):829-840.
[21] Egertonwarburton L M, Querejeta J I, Allen M F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants[J]. Journal of Experimental Botany, 2007,58(12):1473-1483.
[22] Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison withhyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 1996,161(9):575-586.
[23] Rillig M C, Wright S F, Allen M F, et al. Rise in carbon dioxide changes soil structure[J]. Nature, 1999,400(6745):628-628.
[24] Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant & Soil, 1998,198(1):97-107.
[25] Rillig M C. Arbuscular mycorrhizae and terrestrial ecosystem processes[J]. Ecology Letters, 2004,7(8):740-754.
[26] Zhang J, Tang X, Zhong S, et al. Recalcitrant carbon components in glomalin-related soil protein facilitate soil organic carbon preservation in tropical forests[J]. Scientific Reports, 2017,7(1):2391-2399.
[27] Sui X, Wu Z, Lin C, et al. Terrestrially derived glomalin-related soil protein quality as a potential ecological indicator in a peri-urban watershed[J]. Environmental Monitoring and Assessment, 2017,189(7):315-332.
[28] Treseder K K, Turner K M. Glomalin in Ecosystems[J]. Soil Science Society of America Journal, 2007,71(4):1257-1266.
[29] 唐宏亮,刘龙,王莉,等.土地利用方式对球囊霉素土层分布的影响[J].中国生态农业学报,2009,17(6):1137-1142.
[30] 阙弘,葛阳洋,康福星,等.南京典型利用方式土壤中球囊霉素含量及剖面分布特征[J].土壤,2015,47(4):719-724.
[31] 柴立伟,刘梦娇,蒋大林,等.北京市不同地区土壤中的球囊霉素荧光特征及其与土壤理化性质的关系[J].环境科学,2016,37(12):4806-4814.
[32] 杜介方, 张彬, 解宏图,等. 不同施肥处理对球囊霉素土壤蛋白含量的影响[J].土壤通报,2011,42(3):573-577.
[33] 李博文.施肥对青藏高原高寒草甸球囊霉素土壤相关蛋白及其环境因子的影响[D].兰州:兰州大学,2016.
[34] Wuest S B, Caesar-Tonthat T C, Wright S F, et al. Organic matter addition, N, and residue burning effects on infiltration, biological, and physical properties of an intensively tilled silt-loam soil[J]. Soil & Tillage Research, 2005,84(2):154-167.
[35] Zhang J, Tang X, He X, et al. Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest:Potential consequences for soil carbon accumulation[J]. Soil Biology & Biochemistry, 2015,83:142-149.
[36] Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity:a synthesis[J]. Ecological Applications A Publication of the Ecological Society of America, 2010,20(1):30-59.
[37] 南京农业大学.土壤农化分析[M].2版.北京:农业出版社,1981.
[38] 张维娜,廖周瑜.氮沉降增加对森林植物影响的研究进展[J].环境科学导刊,2009,28(3):21-24.
[39] Zhang J, Ai Z, Liang C, et al. Response of soilmicrobial communities and nitrogen thresholds of Bothriochloa ischaemum to short-term nitrogen addition on the Loess Plateau[J]. Geoderma, 2017,308:112-119.
[40] Wright S F, Upadhyaya A, Buyer J S. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis[J]. Soil Biology & Biochemistry, 1998,30(13):1853-1857.
[41] Rillig M C, Maestre F T, Lamit L J. Microsite differences in fungal hyphal length glomalin and soil aggregate stability in semiarid Mediterranean steppes[J]. Soil Biology and Biochemistry, 2003,35(9):1257-1260.
[42] Rillig M C, Wright S F, Nichols K A, et al. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant and Soil, 2001,233(2):167-177.


 XIN Qi,LIANG Chutao,ZHANG Jiaoyang,et al.Effects of Nitrogen Addition on Dissolved Matter and Spectroscopic Characteristics of Soil Growing Bothriochloa ischaemum[J].,2017,24(05):93.
 ZHAO Li.Effects of Nitrogen Addition on the Soil Nutrient and Microbial Biomass in Root Zone of Medicagosativa[J].,2014,21(05):35.
 LI Zhicong,HE Lirong,WU Yang,et al.Effect of Nitrogen Addition on Soil Carbon Components in Planted Pinus tabulaeformis Carr. Forest[J].,2018,25(05):54.
 ZHANG Jiaoyang,HE Lirong,LI Yuanze,et al.Distribution Characteristics of Glomalin-Related Soil Protein in Different Slope Aspects of the Loess Hilly Region[J].,2019,26(05):65.


更新日期/Last Update: 1900-01-01