[1]吴阳,李强,徐红伟,等.氮添加对白羊草土壤球囊霉素含量特征的影响[J].水土保持研究,2018,25(05):61-65,71.
 WU Yang,LI Qiang,XU Hongwei,et al.Effects of Nitrogen Addition on Characteristic of Glomalin in the Soil of Bothriochloa ischaemum[J].Research of Soil and Water Conservation,2018,25(05):61-65,71.
点击复制

氮添加对白羊草土壤球囊霉素含量特征的影响

参考文献/References:

[1] Holland E A, Dentener F J, Braswell B H, et al. Contemporary and pre-industrial global reactive nitrogen budgets[J]. Biogeochemistry, 1999,46(1/3):7-43.
[2] Jefferies R L, Maron J L. The embarrassment of richesatmospheric deposition of nitrogen and community and ecosystem processes[J]. Trends in Ecology & Evolution, 1997,12(2):74-78.
[3] Galloway J N, Cowling E B. Reactive nitrogen and the world:200 years of change[C]. International Nitrogen Conference, 2002:64-71.
[4] Phoenix G K, Emmett B A, Britton A J, et al. I-mpacts of atmospheric nitrogen deposition:responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments[J]. Global Change Biology, 2012,18(4):1197-1215.
[5] Stark S, Hilli S, Willför S, et al. Composition of lipophilic compounds and carbohydrates in the accumulated plant litter and soil organic matter in boreal forests[J]. European Journal of Soil Science, 2012,63(1):65-74.
[6] Zhong Y, Yan W, Shangguan Z. Impact of long-term N additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies[J]. Soil Biology & Biochemistry, 2015,91:151-159.
[7] Egertonwarburton L M, Allen E B. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient.[J]. Ecological Applications, 2000,10(2):484-496.
[8] Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001,413(6853):297-299.
[9] Treseder K K. A meta-analysis of mycorrhizal r-esponses to nitrogen, phosphorus, and atmospheric CO2 in field studies[J]. New Phytologist, 2004,164(2):347-355.
[10] Bradley K, Drijber R A, Knops J. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi[J]. Soil Biology & Biochemistry, 2006,38(7):1583-1595.
[11] Van Diepen L T A, Lilleskov E A, Pregitzer K S, et al. Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions[J]. New Phytologist, 2007,176(1):175-183.
[12] Van Diepen L T A, Lilleskov E A, Pregitzer K S. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests[J]. Molecular Ecology, 2011,20(4):799-811.
[13] Zheng Y, Kim Y C, Tian X F, et al. Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow.[J]. Fems Microbiology Ecology, 2015,89(3):594-605.
[14] Lv F, Xue S, Wang G, et al. Nitrogen addition shifts the microbial community in the rhizosphere of Pinus tabuliformis in Northwestern China[J]. PloS one, 2017,12(2):e0172382.
[15] Fitter A H, Helgason T, Hodge A. Nutritional exchanges in the arbuscular mycorrhizal symbiosis:Implications for sustainable agriculture[J]. Fungal Biology Reviews, 2011,25(1):68-72.
[16] Smith S E, Read D J. Mycorrhizal symbiosis[M]. New York:Academic Press, 2010.
[17] Hernández-Hernández R M, Roldán A, Caravaca F, et al. Arbuscular mycorrhizal fungal assemblages in biological crusts from a Neotropical savanna are not related to the dominant perennial Trachypogon[J]. Science of the Total Environment, 2017,575:1203-1210.
[18] Li H, Smith S E, Holloway R E, et al. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses[J]. New Phytologist, 2006,172(3):536-543.
[19] Subramanian K S, Santhanakrishnan P, Balasubramanian P. Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress[J]. Scientia Horticulturae, 2006,107(3):245-253.
[20] De l P E, Echeverría S R, Wh V D P, et al. Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria[J]. New Phytologist, 2010,169(4):829-840.
[21] Egertonwarburton L M, Querejeta J I, Allen M F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants[J]. Journal of Experimental Botany, 2007,58(12):1473-1483.
[22] Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison withhyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 1996,161(9):575-586.
[23] Rillig M C, Wright S F, Allen M F, et al. Rise in carbon dioxide changes soil structure[J]. Nature, 1999,400(6745):628-628.
[24] Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant & Soil, 1998,198(1):97-107.
[25] Rillig M C. Arbuscular mycorrhizae and terrestrial ecosystem processes[J]. Ecology Letters, 2004,7(8):740-754.
[26] Zhang J, Tang X, Zhong S, et al. Recalcitrant carbon components in glomalin-related soil protein facilitate soil organic carbon preservation in tropical forests[J]. Scientific Reports, 2017,7(1):2391-2399.
[27] Sui X, Wu Z, Lin C, et al. Terrestrially derived glomalin-related soil protein quality as a potential ecological indicator in a peri-urban watershed[J]. Environmental Monitoring and Assessment, 2017,189(7):315-332.
[28] Treseder K K, Turner K M. Glomalin in Ecosystems[J]. Soil Science Society of America Journal, 2007,71(4):1257-1266.
[29] 唐宏亮,刘龙,王莉,等.土地利用方式对球囊霉素土层分布的影响[J].中国生态农业学报,2009,17(6):1137-1142.
[30] 阙弘,葛阳洋,康福星,等.南京典型利用方式土壤中球囊霉素含量及剖面分布特征[J].土壤,2015,47(4):719-724.
[31] 柴立伟,刘梦娇,蒋大林,等.北京市不同地区土壤中的球囊霉素荧光特征及其与土壤理化性质的关系[J].环境科学,2016,37(12):4806-4814.
[32] 杜介方, 张彬, 解宏图,等. 不同施肥处理对球囊霉素土壤蛋白含量的影响[J].土壤通报,2011,42(3):573-577.
[33] 李博文.施肥对青藏高原高寒草甸球囊霉素土壤相关蛋白及其环境因子的影响[D].兰州:兰州大学,2016.
[34] Wuest S B, Caesar-Tonthat T C, Wright S F, et al. Organic matter addition, N, and residue burning effects on infiltration, biological, and physical properties of an intensively tilled silt-loam soil[J]. Soil & Tillage Research, 2005,84(2):154-167.
[35] Zhang J, Tang X, He X, et al. Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest:Potential consequences for soil carbon accumulation[J]. Soil Biology & Biochemistry, 2015,83:142-149.
[36] Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity:a synthesis[J]. Ecological Applications A Publication of the Ecological Society of America, 2010,20(1):30-59.
[37] 南京农业大学.土壤农化分析[M].2版.北京:农业出版社,1981.
[38] 张维娜,廖周瑜.氮沉降增加对森林植物影响的研究进展[J].环境科学导刊,2009,28(3):21-24.
[39] Zhang J, Ai Z, Liang C, et al. Response of soilmicrobial communities and nitrogen thresholds of Bothriochloa ischaemum to short-term nitrogen addition on the Loess Plateau[J]. Geoderma, 2017,308:112-119.
[40] Wright S F, Upadhyaya A, Buyer J S. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis[J]. Soil Biology & Biochemistry, 1998,30(13):1853-1857.
[41] Rillig M C, Maestre F T, Lamit L J. Microsite differences in fungal hyphal length glomalin and soil aggregate stability in semiarid Mediterranean steppes[J]. Soil Biology and Biochemistry, 2003,35(9):1257-1260.
[42] Rillig M C, Wright S F, Nichols K A, et al. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant and Soil, 2001,233(2):167-177.

相似文献/References:

[1]辛奇,梁楚涛,张娇阳,等.氮添加对白羊草土壤水溶性碳氮及其光谱特征的影响[J].水土保持研究,2017,24(05):93.
 XIN Qi,LIANG Chutao,ZHANG Jiaoyang,et al.Effects of Nitrogen Addition on Dissolved Matter and Spectroscopic Characteristics of Soil Growing Bothriochloa ischaemum[J].Research of Soil and Water Conservation,2017,24(05):93.
[2]赵莉.氮添加对紫花苜蓿根区土壤养分及土壤微生物量的影响[J].水土保持研究,2014,21(06):35.
 ZHAO Li.Effects of Nitrogen Addition on the Soil Nutrient and Microbial Biomass in Root Zone of Medicagosativa[J].Research of Soil and Water Conservation,2014,21(05):35.
[3]李志聪,何莉蓉,吴阳,等.氮添加对人工油松林土壤碳组分的影响[J].水土保持研究,2018,25(04):54.
 LI Zhicong,HE Lirong,WU Yang,et al.Effect of Nitrogen Addition on Soil Carbon Components in Planted Pinus tabulaeformis Carr. Forest[J].Research of Soil and Water Conservation,2018,25(05):54.
[4]张娇阳,何俐蓉,李袁泽,等.黄土丘陵区不同坡向土壤球囊霉素类相关土壤蛋白的分布特征[J].水土保持研究,2019,26(06):65.
 ZHANG Jiaoyang,HE Lirong,LI Yuanze,et al.Distribution Characteristics of Glomalin-Related Soil Protein in Different Slope Aspects of the Loess Hilly Region[J].Research of Soil and Water Conservation,2019,26(05):65.

备注/Memo

收稿日期:2017-12-10;改回日期:2018-01-04。
基金项目:十三五国家重点研发计划(2016YFC0501707);国家科技支撑计划(2015BAC01B03);中科院西部青年学者项目(XAB2015A05);国家自然科学基金(41661101)
作者简介:吴阳(1992-),男,陕西西安人,硕士,研究方向:土壤微生物生态。E-mail:wuyang0521@nwafu.edu.cn
通讯作者:薛萐(1978-),男,陕西西安人,博士,研究员,博士生导师,研究方向:恢复生态学。E-mail:xuesha100@163.com

更新日期/Last Update: 1900-01-01