[1]董苗,严平,孟小楠,等.碳酸钙含量对土壤风蚀强度的影响[J].水土保持研究,2018,25(05):18-23.
 DONG Miao,YAN Ping,MENG Xiaonan,et al.Effect of Calcium Carbonate on Wind Erosion[J].,2018,25(05):18-23.
点击复制

碳酸钙含量对土壤风蚀强度的影响()
分享到:

《水土保持研究》[ISSN:1005-3409/CN:61-1272/P]

卷:
25卷
期数:
2018年05期
页码:
18-23
栏目:
出版日期:
2018-09-06

文章信息/Info

Title:
Effect of Calcium Carbonate on Wind Erosion
作者:
董苗123 严平12 孟小楠12 郭金蕊12 钱瑶12 吴伟12
1. 北京师范大学 地理科学学部, 北京 100875;
2. 北京师范大学 地表过程与资源生态重点实验室, 北京 100875;
3. 防沙治沙教育部工程研究中心, 北京 100875
Author(s):
DONG Miao123 YAN Ping12 MENG Xiaonan12 GUO Jinrui12 QIAN Yao12 WU Wei12
1. Faculty of Geographical Sciences, Beijing Normal University, Beijing 100875, China;
2. State Key Laboratory of Earth Surface Process and Resource Ecology, Beijing Normal University, Beijing 100875, China;
3. MOE Engineering Research Center of Desertification and Blown-sand Control, Beijing 100875, China
关键词:
CaCO3含量起动风速风蚀强度风洞试验
Keywords:
calcium carbonate contentthreshold wind velocitywind erosion ratewind tunnel experiment
分类号:
S157.1
摘要:
研究选取内蒙古东部的两种土壤,经过后期的培育使土壤中的CaCO3含量分别达到0%,2%,5%,8%,10%,通过风洞试验分析了CaCO3含量与起动风速、风蚀速率之间的关系。结果表明:(1)随着CaCO3含量的增加,土壤的起动风速呈现先增加后减小的趋势,当土壤中的CaCO3含量约为5%时,起动风速达到最大;(2)不论土壤中CaCO3含量如何变化,风蚀速率都随着风速的增大而增大,但不同风速下,当CaCO3含量约为5%时,风蚀强度最小,风蚀强度随风速的变化趋势较平缓;(3)风蚀速率与CaCO3含量的关系符合二次函数。当碳酸钙含量约为5%时,风蚀速率较小,但由于土壤性质的差异,两种土壤累积风蚀强度不同;(4)将土壤中的CaCO3含量控制在5%左右,风速降低到10 m/s以下时,对防治草原地区土壤风蚀有显著的效果。
Abstract:
Two types of soils from eastern Inner Mongolia, China, were selected as the research samples. Following soil cultivation, the CaCO3 contents in the soils reached 0%, 2%, 5%, 8%, and 12%, respectively. The relationship of CaCO3 contents with threshold wind velocity and wind erosion rates was analyzed through wind tunnel experiment and the following conclusions were obtained:(1) As CaCO3 content increased, the threshold wind velocity for soils first increased and then decreased. The threshold wind velocity was highest when the CaCO3 content was approximately 5%. (2) Regardless of the CaCO3 contents in the soils, the wind erosion rate increased along with wind velocity. However, under different wind velocities, when the CaCO3 content was approximately 5%, the wind erosion intensity was lowest. The wind erosion intensity showed a smooth variation trend in response to the variations in wind velocity. (3) The relationship between wind erosion rate and CaCO3 content could be described by a quadratic function. When the CaCO3 content was approximately 5%, the wind erosion rate was relatively small. However, owing to differences in soil properties, the two types of soils exhibited different cumulative wind erosion intensities. (4) Wind erosion of the soils could be remarkably reduced by maintaining the soil CaCO3 content of around 5% and reducing the wind velocity to less than 10 m/s.

参考文献/References:

[1] 林艺,李和平,肖波.东北黑土区农田土壤风蚀的影响因素及其数量关系[J].水土保持学报,2017,31(4):44-50.
[2] 武志涛,马志婷,郭未旭,等.晋北沙漠化地区土壤风蚀动态及防治效果[J].水土保持通报,2016,36(6):8-14.
[3] 宋胜明,刘霞,张荣华,等.黄泛风沙区耕地土壤风蚀影响因子的通径分析[J].水土保持通报,2017,37(3):249-253.
[4] Chepil W S. Properties of soil which influence wind erosion:Ⅳ. state of dry aggregate structure[J]. Soil Science, 1951,72(5):387-402.
[5] Chepil W S. Factors that influence clod structure and erodibility of soil by wind:Ⅰ Soil texture[J]. Soil Science, 1953,75(6):473-484.
[6] Chepil W S. Factors that influence clod structure and erodibility of soil by wind:Ⅱ Water-Stable Structure[J]. Soil Science, 1953,76(5):389-400.
[7] 申陆,田美荣,高吉喜.基于RWEQ模型的浑善达克沙漠化防治生态功能区土壤风蚀与主要影响因子分析[J].水土保持研究,2016,23(6):90-97.
[8] 邹学勇,张春来,程宏,等.土壤风蚀模型中的影响因子分类与表达[J].地球科学进展,2014,29(8):875-889.
[9] 王子龙,胡斐南,赵勇钢,等.土壤胶结物质分布特征及其对黄土大团聚体稳定性的影响[J].水土保持学报,2016,30(5):331-336.
[10] Gile L H, Peterson F F, Grossman R B. The K Horizon:A master soil horizon of carbonate accumulation[J]. Soil Science, 1965,99(2):74-82.
[11] Chepil W S. Factors that influence clod structure and erodibility of soil by wind:Ⅲ. calcium carbonate and decomposed organic matter[J]. Soil Science, 1954,77(6):473-480.
[12] Chepil W S. Factors that influence clod structure and erodibility of soil by wind:Ⅳ. Sand, Silt, and Clay[J]. Soil Science, 1955,80(2):155-162.
[13] Chepil W S. Factors that influence clod structure and erodibility of soil by wind:Ⅴ. Organic Matter at Various Stages of Decomposition[J]. Soil Science, 1955,80(5):413-421.
[14] Chepil W S. Influence of moisture on erodibility of soil by wind[J]. Soil Science Society of America Journal, 1956,20(2):288-292.
[15] T·φ·雅库波夫著,梁式弘译.土壤风蚀及其防治[M].北京:农业出版社,1956:3-47.
[16] Fryrear D W, Bilbro J D, Saleh A, et al. RWEQ:improved wind erosion technology[J]. Journal of Soil & Water Conservation, 2000,55(2):183-189.
[17] 姬生勋,刘玉涛,董智,等.黄泛平原风沙区不同造林年限林地土壤风蚀与理化性质的变化[J].水土保持研究,2011,18(3):158-161.
[18] 南岭,杜灵通,展秀丽.土壤风蚀可蚀性研究进展[J].土壤,2014,46(2):204-211.
[19] 王彬.土壤可蚀性动态变化机制与土壤可蚀性估算模型[D].陕西杨凌:西北农林科技大学,2013.
[20] 杨钦,郭中领,王仁德,等.河北坝上不同土地利用方式对土壤风蚀的影响[J].干旱区资源与环境,2017,31(2):185-190.
[21] 郭金蕊.草原栗钙土CaCO3含量对风蚀影响的试验研究[D].北京:北京师范大学,2013.
[22] Tatarko J, Sporcic M A, Skidmore E L. A history of wind erosion prediction models in the United States Department of Agriculture prior to the Wind Erosion Prediction System[J]. Aeolian Research, 2013,10(13):3-8.
[23] Arabi M, Wild S. Microstructural development in cured soil-lime composites[J]. Journal of Materials Science, 1986,21(2):497-503.
[24] Bell F G. Cement stabilization and clay soils, with examples[J]. Environmental & Engineering Geoscience, 1995,1(2):139-151.
[25] Wild S, Arabi M, Lengwards G. Soil lime reaction and microstructural development elevated temperatures[J]. Clay Minerals, 1986,21(3):279-292.
[26] Wild S, Arabi M, Rowlands G O. Relation between pore size distribution, permeability, and cementitious gel formation in cured clay-lime systems[J]. Metal Science Journal, 1987,3(12):1005-1011.
[27] Diamond S, Kinter E B. Mechanism of soil-lime stabilization[J]. Public Roads, 1965,33(12):260-265.
[28] 和博.石灰对土壤的影响研究[D].河北保定:河北农业大学,2010.
[29] 李丹,王道泽,赵玲玲,等.不同土壤改良剂对设施蔬菜土壤酸化的改良效果研究[J].中国农学通报,2017,33(27):112-116.
[30] 张凯乐.探究酸性土壤pH值与碳氮矿化之间的相互关系[D].浙江杭州:浙江大学,2017.
[31] 卜巧珍.生物炭对石灰土理化性质和作物生长的影响[D].广西桂林:广西师范大学,2014.
[32] 胡乐宁,苏以荣,何寻阳.桂西北喀斯特地区典型土壤在不同筛分强度下团聚体的稳定性[J].水土保持通报,2014,34(3):236-241.
[33] 佀国涵,王毅,徐大兵,等.不同施肥结构对酸性黄棕壤修复效果研究[J].土壤,2016,48(4):714-719.
[34] Clough A, Skjemstad J O. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate[J]. Soil Research, 2000,38(5):1005-1016.
[35] 李富程,张建辉.碳酸钙对石灰性土壤颗粒组成测定的影响[J].土壤通报,2013,44(1):191-196.
[36] 李品芳,白海峰,郭世文,等.栗钙土碳酸钙含量的空间分布特征[J].土壤学报,2014,51(2):402-406.
[37] 张耀方,赵世伟,王子龙,等.黄土高原土壤团聚体胶结物质的分布及作用综述[J].中国水土保持科学,2015,13(5):145-150.
[38] 刘粮.石灰在土壤酸化治理中的应用技术研究[J].现代农业科技,2016(7):224-226.
[39] 史红平.关中农田土壤钙素状况及其退化特征研究[D].陕西杨凌:西北农林科技大学,2016.
[40] 代允超.石灰和有机物料对不同性质镉污染土壤中镉有效性的影响[D].陕西杨凌:西北农林科技大学,2014.
[41] 郭玉文,王淑红,张玉龙,等.黄土高原灌溉农田土壤团粒与碳酸钙关系研究[J].深圳大学学报:理工版,2008,25(3):314-319.
[42] 王小云.土壤团聚体与土壤侵蚀关系研究进展[J].安徽农业科学,2016,44(23):106-108.
[43] Thompson L M. Soils and soil fertility[M]. New York:Mcgraw-Hill, 1957.
[44] Wang L, Shi Z H, Wu G L, et al. Freeze/thaw and soil moisture effects on wind erosion[J]. Geomorphology, 2014,207(3):141-148.
[45] Arimori M, Endo Y, Kobayashi T. Effect of wind and soil moisture on the wind-drift caused by wind erosion[J]. Recueil Des Travaux Chimiques Des Pays-Bas, 2010,53(7):598-606.

备注/Memo

备注/Memo:
收稿日期:2017-10-12;改回日期:2017-10-22。
基金项目:国家重点研发计划(2016YFA0601901);国家重点基础研究发展计划(2013CB956001)
作者简介:董苗(1989-),女,山西吕梁人,博士研究生,研究方向为干旱区地貌。E-mail:miaodong@mail.bnu.edu.cn
通讯作者:严平(1966-),男,安徽宁国人,教授,博士生导师,主要从事土壤风蚀与荒漠化研究。E-mail:yping@bnu.edu.cn
更新日期/Last Update: 1900-01-01