LI Zhicong,HE Lirong,WU Yang,et al.Effect of Nitrogen Addition on Soil Carbon Components in Planted Pinus tabulaeformis Carr. Forest[J].,2018,25(04):54-59.





Effect of Nitrogen Addition on Soil Carbon Components in Planted Pinus tabulaeformis Carr. Forest
李志聪1 何莉蓉1 吴阳1 乔磊磊2 薛萐23
1. 西北农林科技大学 资源环境学院, 陕西 杨凌 712100;
2. 西北农林科技大学 水土保持研究所, 陕西 杨凌 712100;
3. 中国科学院 水利部 水土保持研究所 黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西 杨凌 712100
LI Zhicong1 HE Lirong1 WU Yang1 QIAO Leilei2 XUE Sha23
1. College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China;
2. Institute of Soil and Water Conservation, Northwest A & F University, Yangling, Shaanxi 712100, China;
3. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
nitrogen additionPinus tabuliformis Carr. plantationsoil carbon componentsoil carbon pool activity coefficient
为分析氮沉降对土壤碳库组成及其稳定性的影响,选取了黄土高原植被恢复中的树种油松(Pinus tabuliformis Carr.)作为研究对象,通过氮添加模拟氮沉降,分析了短期氮添加对土壤有机碳(SOC)及其不同活性组分变化规律的影响,结果表明:随着氮添加含量的增大,上层土壤SOC及其高活性组分(C1)、中活性组分(C2)和稳定性组分(C4)含量先增加后降低,在N3达到最大值,对下层土壤SOC及其组分影响较小。氮添加对不同碳组分在总有机碳中的分配比例和土壤碳库活性系数影响较少,4个组分中C4所占比例最大,达74.3%~87.3%。本研究从土壤碳库稳定性角度分析了氮添加对黄土丘陵区森林土壤的碳库组成的影响,有利于对未来全球变化下的土壤碳库过程影响的认识。
In order to analyze the effect of nitrogen deposition on the composition and stability of soil carbon pool, Pinus tabuliformis Carr. was selected as the research object in this study. Nitrogen addition simulating nitrogen deposition was used to analyze the effects of short-term nitrogen deposition. The results showed that the SOC, the high activity component (C1), the middle activity component (C2) in the upper soil increased with the increase of the nitrogen contents, and the content of stability component (C4) firstly increased and then decreased, reaching to the maximum value at N3, and had little effect on the SOC and its components of the deep soil. Nitrogen addition has little effect on the distribution ratio of different carbon components in total organic carbon and the activity coefficient of soil carbon pool, and C4 has the largest proportion among the four components, reaching to 74.3%~87.3%. From the point of view of the stability of soil carbon pool, this study analyzed the effect of nitrogen addition on the carbon pool composition in the forest soils in the loess hilly region, which is conducive to the understanding of the impact of future global changes on soil carbon pool processes.


[1] 肖胜生,董云社,齐玉春,等.草地生态系统土壤有机碳库对人为干扰和全球变化的响应研究进展[J].地球科学进展,2009,24(10):1138-1148.
[2] 李卫,张树锋,向成高,等.云南文山烟区土壤有机质的时空分布特征[J].中国烟草科学,2014,35(6):44-47.
[3] Harrison-Kirk T, Beare M H, Meenken E D, et al. Soil organic matter and texture affect reponses to dry/wet cycles:Changes in soil organic matter fractions and relationships with C and N mineralization[J]. Soil Bioligy and Biochemistry, 2014,74:50-60.
[4] 吴庆标,王效科,郭然.土壤有机碳稳定性及其影响因素[J].土壤通报,2005,36(5):743-747.
[5] 陈小红,段争虎.土壤碳素固定及其稳定性对土壤生产力和气候变化的影响研究[J].土壤通报,2007,38(4):765-772.
[6] Franzluebbers A J, Haney R L, Honeycutt C W, et al. Climatic influences on active fractions of soil organic matter[J]. Soil Biology & Biochemistry,2001,33(7/8):1103-1111.
[7] 朱培立,黄东迈,余晓鹤,等.14C标记秸杆和根茬在淹水及旱地土壤中的矿化特征[J].土壤通报,1994,25(7):67-70.
[8] Maia S M F, Xauier F A S, Oliveira T S, et al. Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceara, Brazil[J]. Agroforestry Systems, 2007,71(2):127-138.
[9] Chan K Y, Bowman A, Oates A, et al. Oxidizible orfanic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys[J]. Soil Science, 2001,166(1):61-67.
[10] Sherrod L, Peterson G, Westfall D, et al. Soil organic carbon pools after 12 years in no-till dryland agroecosystems[J]. Soil Science Society of America Journal, 2005,69(5):1600-1608.
[11] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea:How can it occur[J]. Biogeochemistry,1991,13(2):87-115.
[12] Blair G J, Lefroy R D, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management ondex for agriculture systems[J]. Crop and Pasture Science, 1995,46(7):1459-1466.
[13] Janzen H H. Soil organic matter characteristics after long-term cropping to various spring wheat rotations.[J]. Canadian Journal of Soil Science, 1987,67(4):845-856.
[14] Rangel O J P, Silva C A. Guimaraes P T G, et al. Oxidizible organic carbon fractions in a latosol cultivated with coffee at different planting spacings[J]. Ciencia E Agrotecnologia,2008,32(2):429-437.
[15] Vitousek P M, Aber J D, Howarth R W, et al. Technical report:Human alteration of the global nitrogen cycle:sources and consequences[J]. Ecological Applications,1997,7(3):737-750.
[16] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions[J].Science,2008,320(5878):889-892.
[17] 钟晓兰,李江涛,李小嘉,等.模拟氮沉降增加条件下土壤团聚体对酶活性的影响[J].生态学报,2015,35(5):1422-1433.
[18] Gruber N, Galloway J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature,2008, 451(7176):293-296.
[19] Schlesinger W H. On the fate of anthropogenic nitrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(1):203-208.
[20] Hobbie S E, Eddy W C, Buyarski C R, et al. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment[J]. Ecological Monographs,2012,82(3):389-405.
[21] Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest[J]. Forest Ecology & Management,2004,196(1):43-56.
[22] Hagedorn F, Kammer A, Schmidt M W I, et al. Nitrogen addition alters mineralization dynamics of 13C-depleted leaf and twig litter and reduces leaching of older DOC from mineral soil[J]. Global Change Biology,2012,18(4):1412-1427.
[23] Lovett G M, Arthur M A, Weathers K C, et al. Nitrogen addition increases carbon storage in soils, but not in trees, in an eastern U.S. deciduous forest[J]. Ecosystems,2013,16(6):980-1001.
[24] Zeng D H, Li L J, Fahey T J, et al. Effects of nitrogen addition on vegetation and ecosystem carbon in a semi-arid grassland.[J]. Biogeochemistry,2010,98(1/3):185-193.
[25] Fenn M E, Poth M A, Aber J D, et al. Nitrogen excess in north american ecosystems:Predisposing factors, ecosystem responses, and management strategies[J]. Ecological Applications,1998,8(3):706-733.
[26] Nadelhoffer K J, Downs M R, Fry B. Sinks for 15N-enriched additions to an oak forest and a red pine plantation[J]. Ecological Applications,1999,9(1):72-86.
[27] Andersson P, Dan B, Johnsson L. 30 years of N fertilisation in a forest ecosystem/the fate of added N and effects on N fluxes[J]. Water Air & Soil Pollution,2001,130(1/4):637-642.
[28] Song C, Liu D, Song Y, et al. Effect of nitrogen addition on soil organic carbon in freshwater marsh of Northeast China[J]. Environmental Earth Sciences,2013,70(4):1653-1659.
[29] Loginow W, Wisniewski W, Gonet S S. Fractionation of organic carbon based on susceptibility to oxidation[J]. Polish Journal of Soil Science,1987,20(1):47-52.
[30] Cusack D F. Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient[J]. Soil Biology & Biochemistry,2013,57(57):192-203.
[31] 肖胜生.温带半干旱草地生态系统碳固定及土壤有机碳库对外源氮输入的响应[D].北京:中国科学院地理科学与资源研究所,2010.
[32] Zhang J, Ai Z, Liang C, et al. Response of soil microbial communities and nitrogen thresholds of Bothriochloa ischaemum to short-term nitrogen addition on the Loess Plateau[J]. Geoderma, 2017,308:112-119.
[33] 沈宏,曹志洪,王志明.不同农田生态系统土壤碳库管理指数的研究[J].自然资源学报,1999,14(3):206-211.
[34] 姚旭,景航,梁楚涛,等.人工油松林表层土壤团聚体活性有机碳含量对短期氮添加的响应[J].生态学报,2017,37(20):1-8.
[35] 王清奎,汪思龙,冯宗炜,等.土壤活性有机制及其与土壤质量的关系[J].生态学报,2005,25(3):513-519.
[36] 邱莉萍,张兴昌,程积民,等.土地利用方式对土壤有机质及其碳库管理指数的影响[J].中国环境科学,2009,29(1):84-89.
[37] 韩新辉,佟小刚,杨改河,等.黄土丘陵区不同退耕还林地土壤有机碳库差异分析[J].农业工程学报,2012,28(12):223-229.


 AN Yun,DING Guo-dong,LIANG Wen-jun,et al.Effects of Thinning on the Growth and the Development of Undergrowth of Pinus tabulaeformis Plantation in Rocky Mountain Area of North China[J].,2012,19(04):86.
 YANG Hui-pu.Study on Water Ecological Benefits of Artificial Chinese Pine Stands in Loess Hilly Region[J].,2002,9(04):74.
 YANG Hui-pu,HAN Bing.Effect of Artificial Chinese Pine Stands on Temperature in Loess Hilly and Gully Region[J].,2002,9(04):151.
 XIN Qi,LIANG Chutao,ZHANG Jiaoyang,et al.Effects of Nitrogen Addition on Dissolved Matter and Spectroscopic Characteristics of Soil Growing Bothriochloa ischaemum[J].,2017,24(04):93.
 LI Qing-hua,CAO Yang,CHEN Yun-ming,et al.Litter Mass and Carbon Storage in the Pinus tabulaeformis Plantations in Shaanxi Province[J].,2013,20(04):24.
 ZHAO Li.Effects of Nitrogen Addition on the Soil Nutrient and Microbial Biomass in Root Zone of Medicagosativa[J].,2014,21(04):35.
 WU Yang,LI Qiang,XU Hongwei,et al.Effects of Nitrogen Addition on Characteristic of Glomalin in the Soil of Bothriochloa ischaemum[J].,2018,25(04):61.


更新日期/Last Update: 1900-01-01