[1]Running S W, Nemani R R, Heinsch F A, et al. A continuous satellite-derived measure of global terrestrial primary production[J]. Bioscience, 2004,54(6):547-560.
[2]Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere:Integrating terrestrial and oceanic components[J]. Science, 1998,281(5374):237-240.
[3]刘芳,迟耀斌,王智勇,等. NPP列入生态统计指标体系的潜力分析:以北京地区NPP测算与空间分析为例[J].生态环境学报,2009,18(3):960-966.
Liu F, Chi Y B, Wang Z Y, et al. Potential analysis on NPP included as ecological statistical indicators:Taking Beijing vegetation net primary productivity measurement and spatial analysis as an example[J]. Ecology and Environmental Sciences, 2009,18(3):960-966.
[4]姚檀栋,朱立平.青藏高原环境变化对全球变化的响应及其适应对策[J].地球科学进展,2006,21(5):459-464.
Yao T D, Zhu L P. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy[J]. Advances in Earth Science, 2006,21(5):459-464.
[5]刘飞,刘峰贵,周强,等.青藏高原生态风险及区域分异[J].自然资源学报,2021,36(12):3232-3246.
Liu F, Liu F G, Zhou Q, et al. Ecological risk and regional differentiation in the Qinghai-Tibet Plateau[J]. Journal of Natural Resources, 2021,36(12):3232-3246.
[6]张镱锂,祁威,周才平,等.青藏高原高寒草地净初级生产力(NPP)时空分异[J].地理学报,2013,68(9):1197-1211.
Zhang Y L, Qi W, Zhou C P, et al. Spatial and temporal variability in the net primary production(NPP)of alpine grassland on Tibetan Plateau from 1982 to 2009[J]. Acta Geographica Sinica, 2013,68(9):1197-1211.
[7]周才平,欧阳华,王勤学,等.青藏高原主要生态系统净初级生产力的估算[J].地理学报,2004,59(1):74-79.
Zhou C P, Ouyang H, Wang Q X, et al. Estimation of net primary productivity of major ecosystems in the Tibetan Plateau[J]. Journal of Geographical Sciences, 2004,59(1):74-79.
[8]曹生奎,曹广超,陈克龙,等.青海湖高寒湿地土壤有机碳含量变化特征分析[J].土壤,2013,45(3):392-398.
Cao S K, Cao G C, Chen K L, et al. Characteristics of alpine wetland soil organic carbon variations around Qinghai Lake[J]. Soils, 2013,45(3):392-398.
[9]李小雁,许何也,马育军,等.青海湖流域土地利用/覆被变化研究[J].自然资源学报,2008,23(2):285-296.
Li X Y, Xu H Y, Ma Y J, et al. Land use/cover change in the Qinghai Lake watershed[J]. Journal of Natural Resources, 2008,23(2):285-296.
[10]乔凯,郭伟.青海湖流域植被的净初级生产力估算[J].水土保持通报,2016,36(6):204-209.
Qiao K, Guo W. Estimating net primary productivity of alpine grassland in Qinghai Lake basin[J]. Bulletin of Soil and Water Conservation, 2016,36(6):204-209.
[11]王琪,吴成永,陈克龙,等.基于MODIS NPP数据的青海湖流域产草量与载畜量估算研究[J].生态科学,2019,38(4):178-185.
Wang Q, Wu C Y, Chen K L, et al. Estimating grassland yield and carrying capacity in Qinghai Lake Basin based on MODIS NPP data[J]. Ecological Science, 2019,38(4):178-185.
[12]王志刚,曹生奎,曹广超.近15年来青海湖流域气温、降水变化对植被物候驱动分析[J].水土保持研究,2022,29(1):249-255.
Wang Z G, Cao S K, Cao G C. Analysis on the drive of temperature and precipitation changes to vegetation phenology of the Qinghai Lake basin in the past 15 years[J]. Research of Soil and Water Conservation, 2022,29(1):249-255.
[13]张乐乐,高黎明,陈克龙.高分辨率遥感降水资料在青海湖流域及周边区域的适用性评价[J].水文,2020,40(5):15-21.
Zhang L L, Gao L M, Chen K L. Evaluation of high-resolution remote sensing precipitation data in and near Qinghai Lake basin[J]. Journal of China Hydrology, 2020,40(5):15-21.
[14]潘虹,顾海敏,史建桥,等.基于RS和GIS的青海湖流域植被覆盖度变化与驱动因子研究[J].资源开发与市场,2016,32(7):827-831,768.
Pan H, Gu H M, Shi J Q, et al. Study on changes of vegetation fraction and its driving factors in Qinghai Lake basin based on RS and GIS[J]. Resource Development & Market, 2016,32(7):827-831,768.
[15]李岳坦,李小雁,崔步礼,等.青海湖流域50年来(1956—2007年)河川径流量变化趋势:以布哈河和沙柳河为例[J].湖泊科学,2010,22(5):757-766.
Li Y T, Li X Y, Cui B L, et al. Trend of stream flow in Lake Qinghai Basin during the past 50 years(1956—2007)—Take Buha River and Shaliu River for examples[J]. Journal of Lake Sciences, 2010,22(5):757-766.
[16]俞文政,曲福田,张和平,等.青海湖地区草地资源生产潜力及可持续利用分析[J].中国草地学报,2007,29(3):78-83.
Yu W Z, Qu F T, Zhang H P, et al. The analysis on the productive potential and sustainable utilization of grassland resources in Qinghai Lake Region[J]. Chinese Journal of Grassland, 2007,29(3):78-83.
[17]拓进宝.2000-2016年青海湖流域NDVI时空变化及其与环境因子的关系[D].西宁:青海师范大学,2019.
Tuo J B. Temporal and spatial evolution of NDVI in Qinghai lake basin and its relationship with environmental factors[D]. Xining:Qinghai Normal University, 2019.
[18]Liu H M, Cheng Y, Liu Z F, et al. Conflict or coordination:The spatiotemporal relationship between humans and nature on the Qinghai-Tibet Plateau[J]. Earth'S Future, 2023,11(9):2022EF003452.
[19]中华人民共和国生态环境部.全国生态状况调查评估技术规范:草地生态系统野外观测HJ1168—2021[S].北京:中国环境科学出版社,2021-08-01.
Ministry of Ecology and Environment of the People's Republic of China.Technical specification for investigation and assessment of national ecological status:Field observation of grassland ecosystem HJ1168—2021[S]. Beijing:China Environmental Science Press, 2021-08-01.
[20]中华人民共和国生态环境部.全国生态状况调查评估技术规范:森林生态系统野外观测HJ1167—2021[S].北京:中国环境科学出版社,2021-08-01.
Ministry of Ecology and Environment of the People's Republic of China.Technical Specification for Investigation and Assessment of National Ecological Status—Field Observation of Forest Ecosystem HJ1167—2021[S]. Beijing:China Environmental Science Press, 2021-08-01.
[21]康利刚,曹生奎,曹广超,等.青海湖流域地表温度时空变化特征研究[J].干旱区地理,2023,46(7):1084-1097.
Kang L G, Cao S K, Cao G C, et al. Spatiotemporal variation of land surface temperature in Qinghai Lake Basin[J]. Arid Land Geography, 2023,46(7):1084-1097.
[22]同琳静,刘洋洋,王倩,等.青藏高原草地降水利用效率时空动态及对气候变化的响应[J].干旱地区农业研究,2019,37(5):226-234.
Tong L J, Liu Y Y, Wang Q, et al. Spatial-temporal dynamics of precipitation use efficiency in grassland and its relationship with climate changes on Qinghai-Tibet Plateau[J]. Agricultural Research in the Arid Areas, 2019,37(5):226-234.
[23]徐建华.现代地理学中的数学方法[M].3版.北京:高等教育出版社,2017.
Xu J H. Mathematical methods in contemporary geography[M].3rd Ed. Beijing:Higher Education Press, 2017.
[24]王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.
Wang J F, Xu C D. Geodetector:Principle and prospective[J]. Acta Geographica Sinica, 2017,72(1):116-134.
[25]卓嘎,陈思蓉,周兵.青藏高原植被覆盖时空变化及其对气候因子的响应[J].生态学报,2018,38(9):3208-3218.
Zhuoga, Chen S R, Zhou B. Spatio-temporal variation of vegetation coverage over the Tibetan Plateau and its responses to climatic factors[J]. Acta Ecologica Sinica, 2018,38(9):3208-3218.
[26]许洁,陈惠玲,商沙沙,等.2000—2014年青藏高原植被净初级生产力时空变化及对气候变化的响应[J].干旱区地理,2020,43(3):592-601.
Xu J, Chen H L, Shang S S, et al. Response of net primary productivity of Tibetan Plateau vegetation to climate change based on CEVSA model[J]. Arid Land Geography, 2020,43(3):592-601.
[27]刘杰,汲玉河,周广胜,等.2000—2020年青藏高原植被净初级生产力时空变化及其气候驱动作用[J].应用生态学报,2022,33(6):1533-1538.
Liu J, Ji Y H, Zhou G S, et al. Temporal and spatial variations of net primary productivity(NPP)and its climate driving effect in the Qinghai-Tibet Plateau, China from 2000 to 2020[J]. Chinese Journal of Applied Ecology, 2022,33(6):1533-1538.
[28]徐兴奎,陈红, Levy Jason K.气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析[J].科学通报,2008,53(4):456-462.
Xu X K, Chen H, LEVY Jason K. Temporal and spatial changes of vegetation coverage characteristics in Qinghai-Tibet Plateau under the background of climate warming and its causes[J]. Chinese Science Bulletin, 2008,53(4):456-462.
[29]王莉娜,宋伟宏,张金龙,等.祁连山国家公园植被净初级生产力时空演变及驱动因素分析[J].草业科学,2020,37(8):1458-1474.
Wang L N, Song W H, Zhang J L, et al. Spatio-temporal evolution of vegetation net primary productivity in Qilian Mountain National Park and its driving factors[J]. Pratacultural Science, 2020,37(8):1458-1474.
[30]朱华.青海湖流域生态治理模式与对策研究[J].青海社会科学,2012(6):94-98.
Zhu H. Study on ecological management model and countermeasures in Qinghai Lake Basin[J]. Qinghai Social Sciences, 2012(6):94-98.
[1]李璠,周国英,杨路存,等.围栏封育对青海湖流域主要植物群落多样性与稳定性的影响[J].水土保持研究,2013,20(04):135.
LI Fan,ZHOU Guo-ying,YANG Lu-cun,et al.Effect of Fence on Biodiversity and Stability of the Main Plant Communities in the Qinghai Lake Area[J].Research of Soil and Water Conservation,2013,20(05):135.
[2]曹生奎,陈克龙,曹广超,等.草地退化对青海湖流域小蒿草草甸土壤碳密度的影响[J].水土保持研究,2014,21(01):71.
CAO Sheng-kui,CHEN Ke-long,CAO Guang-chao,et al.Influence of Grassland Degradation on the Soil Carbon Density of the Kobresia pygmaea Meadow in the Qinghai Lake Basin[J].Research of Soil and Water Conservation,2014,21(05):71.
[3]王胜利,刘伟,张连蓬,等.地学环境变量支持的土壤全钾含量自适应曲面建模——以青海湖流域典型地区为例[J].水土保持研究,2018,25(01):132.
WANG Shengli,LIU Wei,ZHANG Lianpeng,et al.Adaptive Surface Modeling of Soil Total Potassium Content Supported by the Environment Variables—A Case Study in Typical Areas of Qinghai Lake Basin[J].Research of Soil and Water Conservation,2018,25(05):132.
[4]杜波波,阿拉腾图娅,包 刚,等.基于CASA模型模拟锡林郭勒草原净初级生产力[J].水土保持研究,2021,28(05):293.
DU Bobo,Alatengtuya,BAO Gang,et al.Simulation of Net Primary Productivity of Xilingol Grassland Based on CASA Model[J].Research of Soil and Water Conservation,2021,28(05):293.
[5]王志刚,曹生奎,曹广超.近15年来青海湖流域气温、降水变化对植被物候驱动分析[J].水土保持研究,2022,29(01):249.
WANG Zhigang,CAO Shengkui,CAO Guangchao.Analysis on the Drive of Temperature and Precipitation Changes to Vegetation Phenology of the Qinghai Lake Basin in the Past 15 Years[J].Research of Soil and Water Conservation,2022,29(05):249.
[6]李鲁冰,林文鹏,任晨阳,等.两种生态系统服务价值评估方法的比较研究——以环杭州湾地区为例[J].水土保持研究,2022,29(03):228.
LI Lubing,LIN Wenpeng,REN Chenyang,et al.Comparative Study on Two Assessment Methods of Ecosystem Service Value[J].Research of Soil and Water Conservation,2022,29(05):228.
[7]王辉源,宋进喜,吴 琼.基于SWAT模型的秦岭北麓灞河流域水源涵养功能综合评价[J].水土保持研究,2023,30(06):307.[doi:10.13869/j.cnki.rswc.2023.06.030]
Wang Huiyuan,Song Jinxi,Wu Qiong.Comprehensive Evaluation of Water Source Conservation Function in the Bahe River Basin at the Northern Foot of Qinling Mountains Based on SWAT Model[J].Research of Soil and Water Conservation,2023,30(05):307.[doi:10.13869/j.cnki.rswc.2023.06.030]
收稿日期:2023-09-30 修回日期:2023-11-09
资助项目:国家自然科学基金“青海湖流域高寒湿地生态系统碳水收支变异特征及尺度扩展研究”(42061008)
第一作者:李文斌(1998—),男,青海海北人,硕士,研究方向为生态水文与水资源学。E-mail:1907634648@qq.com
通信作者:曹生奎(1979—),男,青海西宁人,博士,教授,研究方向为生态水文与水资源学。E-mail:caoshengkui@163.com