[1] 李锐.中国黄土高原研究与展望[M].北京:科学出版社,2008:1-3.
[2] 甘枝茂.黄土高原地貌与土壤侵蚀研究[M].西安:陕西人民出版社,1989:3-6.
[3] 许强,陈婉琳,蒲川豪,等.基于自然的解决方案在黄土高原重大工程灾变防控中的理论与实践[J].工程地质学报,2022,30(4):1179-1192.
[4] 穆兴民,李朋飞,刘斌涛,等.1901—2016年黄土高原土壤侵蚀格局演变及其驱动机制[J].人民黄河,2022,44(9):36-45.
[5] 刘迪,陈海,耿甜伟,等.基于地貌分区的陕西省区域生态风险时空演变[J].地理科学进展,2020,39(2):243-254.
[6] 汤国安,那嘉明,程维明.我国区域地貌数字地形分析研究进展[J].测绘学报,2017,46(10):1570-1591.
[7] 程维明,周成虎,申元村,等.中国近40年来地貌学研究的回顾与展望[J].地理学报,2017,72(5):755-775.
[8] 罗来兴.划分晋西、陕北、陇东黄土区域沟间地与沟谷地的地貌类型[J].地理学报,1956,22(3):201-222.
[9] 周毅.基于DEM的黄土高原正负地形及空间分异研究[D].南京:南京师范大学,2011.
[10] 张磊,汤国安,李发源,等.黄土地貌沟沿线研究综述[J].地理与地理信息科学,2012,28(6):44-48.
[11] Yang Xin, Li min, Na Jiaming, et al. Gully boundary extraction based on multidirectional hill-shading from high-resolution DEMs[J]. Transactions in Gis, 2017,21(6):1204-1216.
[12] Dai Wen, Yang Xin, Na Jiaming, et al. Effects of DEM resolution on the accuracy of gully maps in loess hilly areas[J]. Catena, 2019,177:114-125.
[13] Zhou Yi, Tang Guoan, Yang Xin, et al. Positive and negative terrains on northern Shaanxi Loess Plateau[J]. Journal of Geographical Sciences, 2010,20(1):64-76.
[14] 刘鹏举,朱清科,吴东亮,等.基于栅格DEM与水流路径的黄土区沟缘线自动提取技术研究[J].北京林业大学学报,2006,28(4):72-76.
[15] 王轲,王琤,张青峰,等.地形开度和差值图像阈值分割原理相结合的黄土高原沟沿线提取法[J].测绘学报,2015,44(1):67-75.
[16] Na Jiaming, Yang Xin, Dai Wen, et al. Bidirectional DEM relief shading method for extraction of gully shoulder line in loess tableland area[J]. Physical Geography, 2018,39(4):368-386.
[17] 晏实江,汤国安,李发源,等.利用DEM边缘检测进行黄土地貌沟沿线自动提取[J].武汉大学学报:信息科学版,2011,36(3):363-367.
[18] Jiang Sheng, Tang Guoan, Liu Kai. A new extraction method of loess shoulder-line based on Marr-Hildreth operator and terrain mask[J]. Plos One, 2015,10(4):e0123804.
[19] 周毅,汤国安,习羽,等.引入改进Snake模型的黄土地形沟沿线连接算法[J].武汉大学学报:信息科学版,2013,38(1):82-85.
[20] 宋效东,汤国安,周毅,等.基于并行GVF Snake模型的黄土地貌沟沿线提取[J].中国矿业大学学报,2013,42(1):134-140.
[21] 刘玮,李发源,熊礼阳,等.基于区域生长的黄土地貌沟沿线提取方法与试验[J].地球信息科学学报,2016,18(2):220-226.
[22] Ronneberger Olaf, Fischer Philipp, Brox Thomas. U-net:Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015:234-241.
[23] 许玥.基于改进Unet的遥感影像语义分割在地表水体变迁中的应用[D].重庆:重庆师范大学,2019.
[24] 卫佳杰.基于U-Net和注意力机制的双源遥感图像语义分割方法研究[D].西安:西安电子科技大学,2020.
[25] 徐佳伟,刘伟,单浩宇,等.基于PRCUnet的高分遥感影像建筑物提取[J].地球信息科学学报,2021,23(10):1838-1849.
[26] Cao Kaili, Zhang Xiaoli. An improved res-unet model for tree species classification using airborne high-resolution images[J]. Remote Sensing, 2020,12(7):1128.
[27] Hou Yuewu, Liu Zhaoying, Zhang Ting, et al. C-UNet:Complement UNet for Remote Sensing Road Extraction[J]. Sensors, 2021,21(6):2153.
[28] Nagi Anmol Sharan, Kumar Devinder, Sola Daniel, et al. RUF:Effective Sea Ice Floe Segmentation Using End-to-End RES-UNET-CRF with Dual Loss[J]. Remote Sensing, 2021,13(13):2460.
[29] 王祯,吴金华,白帅,等.黄土丘陵沟壑区耕地细碎化评价与土地整治工程分区:以吴起县为例[J].水土保持研究,2022,29(4):300-307.
[30] 刘长海,葛瑶,秦家凤,等.吴起县不同土地利用类型土壤物理性质特征[J].延安大学学报:自然科学版,2022,41(2):77-82.
[31] 王旭冉.基于改进U-Net的遥感影像语义分割研究[D].银川:宁夏大学,2020.
[32] 田萱,王亮,孟祥光.基于深度学习的图像语义分割技术[M].北京:海洋出版社,2019:86-87.
[33] Ramachandran P, Zoph B, Le Q V. Searching for activation functions[J]. Arxiv Preprint ArXiv:1710.05941, 2017, Doi:org/10.48550/arXiv.1710.05941.
[34] Howard Andrew, Sandler Mark, Chu Grace, et al. Searching for mobilenetv3[C]. Proceedings of the Ieee/Cvf International Conference on Computer Vision, 2019:1314-1324.
[35] Lin Tsung Yi, Goyal Priya, Girshick Ross, et al. Focal loss for dense object detection[C]. Proceedings of the Ieee International Conference on Computer Vision, 2017:2980-2988.
[36] Salehi Seyed Sadegh Mohseni, Erdogmus Deniz, Gholipour Ali. Tversky loss function for image segmentation using 3 D fully convolutional deep networks[C]. International Workshop on Machine Learning in Medical Imaging. Springer, Cham, 2017:379-387.
[37] Woo Sanghyun, Park Jongchan, Lee Joon Young, et al. Cbam:Convolutional block attention module[C]. Proceedings of the European Conference on Computer Vision(Eccv),2018:3-19.
[38] 王海涛,王一琛,王永强,等.基于MS-UNet的Landsat影像云检测[J].激光与光电子学进展,2021,58(14):87-94.
[39] Jiao Libin, Huo Lianzhi, Hu Changmiao, et al. Refined UNet:UNet-based refinement network for cloud and shadow precise segmentation[J]. Remote Sensing, 2020,12(12):2001.
收稿日期:2022-10-13 修回日期:2022-10-26
资助项目:国家自然科学基金项目(41871190); 陕西省重点研发计划(2021SF-440); 黄土与第四纪地质国家重点实验室开放基金(SKLLQG2002); 长安大学中央高校基本科研业务费专项资金(300102353201)
第一作者:赵子林(1995—),男,甘肃武威人,硕士研究生,主要从事土壤侵蚀、地形分析。E-mail:chdzhaozilin@163.com
通信作者:韩磊(1979—),男,河南沈丘人,博士,副教授,主要从事土壤侵蚀、污损土地修复、空间分析与建模。E-mail:hanshuanglei@chd.edu.cn