[1]韩仕星,陈允腾,张懿晴,等.增温与干旱双重变化对若尔盖泥炭CH4排放的影响[J].水土保持研究,2022,29(05):391-397,410.
 HAN Shixing,CHEN Yunteng,ZHANG Yiqing,et al.Dual Effects of Warming and Drought on Peat Methane Emissions in Zoige[J].Research of Soil and Water Conservation,2022,29(05):391-397,410.
点击复制

增温与干旱双重变化对若尔盖泥炭CH4排放的影响

参考文献/References:

[1] Frolking S, Talbot J, Jones M C, et al. Peatlands in the Earth's 21st century climate system[J]. Environmental Reviews, 2011,19:371-396.
[2] Yu Z, Beilman D W, Frolking S, et al. Peatlands and their role in the global carbon cycle[J]. Eos, Transactions American Geophysical Union, 2011,92(12):97-98.
[3] 周文昌,崔丽娟,王义飞,等.若尔盖高原退化湿地土壤有机碳储量[J].水土保持研究,2017,24(5):27-32.
[4] Chen H, Yang G, Peng C, et al. The carbon stock of alpine peatlands on the Qinghai-Tibetan Plateau during the Holocene and their future fate[J]. Quaternary Science Reviews, 2014,95:151-158.
[5] Zeng J, Chen H, Bai Y, et al. Water table drawdown increases plant biodiversity and soil polyphenol in the Zoige Plateau[J]. Ecological Indicators, 2021,121:107118.
[6] 曾嘉,陈槐,刘建亮,等.青藏高原泥炭地水位下降引起土壤酚类物质及植被生物量的增加促进土壤碳积累[J].生态学报,2022,42(2):1-10.
[7] 游宇驰,李志威,黄草,等.1990—2016年若尔盖高原荒漠化时空变化分析[J].生态环境学报,2017,26(10):1671-1680.
[8] Lou X D, Zhai S Q, Kang B, et al. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland:results from a mesocosm experiment[J]. Plos One, 2014,9(11):e109861.
[9] Yang G, Chen H, Wu N, et al. Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China[J]. Soil Biology and Biochemistry, 2014,78:83-89.
[10] 吴海东,崔丽娟,王金枝,等.若尔盖高原泥炭地碳收支特征及固碳价值评价研究[J].湿地科学与管理,2018,14(1):16-19.
[11] 胡云龙,白银萍,董发勤,等.泥炭地亚表层含碳温室气体排放及其影响因素[J].应用与环境生物学报,2018,24(2):395-400.
[12] Dlugokencky E J, Nisbet E G, Fisher R, et al. Global atmospheric methane:budget, changes and dangers[J]. Philosophical Transactions, 2011,369(1943):2058-2072.
[13] Forster P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing[C]//Solomon S, Qin D, Manning M, Et Al. Climate Change 2007:the Physical Science Basis:Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York:Cambridge University Press, 2007.
[14] Kirtman B, Power S B, Adedoyin J A, et al. Near-term Climate Change: Projections and Predictability[C]//Stocker D Q T F, Plattner G.-K, Tignor M, Et Al. Climate Change 2013:the Physical Science Basis:Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, Ny, Usa:Intergovernmental Panel on Climate Change, 2013.
[15] Fekete B M, Wisser D, Kroeze C, et al. Millennium ecosystem assessment scenario drivers(1970—2050):Climate and hydrological alterations[J]. Global Biogeochemical Cycles, 2010,24(4),doi.org/10.1029/2009 GB003593.
[16] Bridgham S D, Cadillo-Quiroz H, Keller J K, et al. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales[J]. Global Change Biology, 2013,19(5):1325-1346.
[17] Blodau C, Roulet N T, Heitmann T, et al. Belowground carbon turnover in a temperate ombrotrophic bog[J]. Global Biogeochemical Cycles, 2007,21(1),doi.org/10.1029/2005 GB002659.
[18] Estop-Aragonés C, Knorr K H, Blodau C. Belowground in situ redox dynamics and methanogenesis recovery in a degraded fen during dry-wet cycles and flooding[J]. Biogeosciences, 2013,10(1):421-436.
[19] Bond-Lamberty B, Smith A P, Bailey V. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils[J]. Biogeosciences, 2016,13(24):6669-6681.
[20] Liu L, Chen H, Jiang L, et al. Response of anaerobic mineralization of different depths peat carbon to warming on Zoige plateau[J]. Geoderma, 2019,337:1218-1226.
[21] Liu L, Chen H, Zhu Q, et al. Responses of peat carbon at different depths to simulated warming and oxidizing[J]. Science of the Total Environment, 2016,548:429-440.
[22] Zhou W, Cui L, Wang Y, et al. Methane emissions from natural and drained peatlands in the Zoigê, eastern Qinghai-Tibet Plateau[J]. Journal of Forestry Research, 2017,28(3):539-547.
[23] Byrne K A, Chojnicki B, Christensen T R, et al. EU peatlands:Current carbon stocks and trace gas fluxes[R]. Sweden:Geosphere-Biosphere Centre, Lund University, 2004. http://hdl.handle.net/11858/00-001M-0000-000E-D16B-6.
[24] Freeman C, Nevison G B, Kang H, et al. Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland[J]. Soil Biology and Biochemistry, 2002,34(1):61-67.
[25] Urbanová Z, Bárta J, Picek T. Methane emissions and methanogenic archaea on pristine, drained and restored mountain peatlands, Central Europe[J]. Ecosystems, 2013,16(4):664-677.
[26] 崔丽娟,周文昌,王义飞,等.若尔盖高原季节性淹水沼泽两个生长季甲烷排放通量[J].应用与环境生物学报,2017,23(6):1067-1073.
[27] Xue D, Chen H, Zhan W, et al. How do water table drawdown, duration of drainage, and warming influence greenhouse gas emissions from drained peatlands of the Zoige Plateau[J]. Land Degradation & Development, 2021,32(11):3351-3364.
[28] 高燕,刘高慧,杜乐山,等.地下水位和土壤温度对若尔盖泥炭地CH4排放的影响[J].环境科学研究,2016,29(4):516-521.
[29] Tan W B, Jia Y F, Huang C H, et al. Increased suppression of methane production by humic substances in response to warming in anoxic environments[J]. Journal of Environmental Management, 2018,206:602-606.

相似文献/References:

[1]冯文兰,郑杰.基于MODIS和NOAA数据尺度转换的若尔盖植被变化研究[J].水土保持研究,2016,23(03):297.
 FENG Wenlan,ZHENG Jie.Analysis on Vegetation Change in Zoige Region by the Scale Transformation Method Based on MODIS and NOAA DATA[J].Research of Soil and Water Conservation,2016,23(05):297.

备注/Memo

收稿日期:2021-06-10 修回日期:2021-08-09
资助项目:国家自然科学青年基金(31901167); 河北农业大学现代林业学科群项目(XK1008601519); 河北农业大学青年才俊人才引进项目(2D201732); 河北农业大学大学生创新创业训练计划资助项目(201810086009)
第一作者:韩仕星(2000—),女,河北石家庄市人,本科在读,研究方向:生态恢复。E-mail:2780343963@qq.com
通信作者:王征(1985—),男,河北保定市人,博士,副教授,研究方向:生态恢复。E-mail:wzhwangzheng@126.com

更新日期/Last Update: 2022-08-20