[1] Zhu X J, Yu Q F, Gao Y N, et al. Approaches of climate factors affecting the spatial variation of annual gross primary productivity among terrestrial ecosystems in China[J]. Ecological Indicators, 2016,62:174-181.
[2] Paul B. Alton. The sensitivity of models of gross primary productivity to meteorological and leaf area forcing: A comparison between a Penman-Monteith ecophysiological approach and the MODIS Light-Use Efficiency algorithm[J]. Agricultural and Forest Meteorology, 2016,218:11-24.
[3] Yao Y, Wang X, Li Y, et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years[J]. Global Change Biology, 2018,24(1):184-196.
[4] Zhao P, Wang D J, He S T, et al. Driving forces of NPP change in debris flow prone area: A case study of a typical region in SW China[J]. Ecological Indicators, 2020,119:106811.
[5] Tang X G, Liu D W, Song K S, et al. A new model of net ecosystem carbon exchange for the deciduous-dominated forest by integrating MODIS and flux data[J]. Ecological Engineering, 2011,37(10):1567-1571.
[6] 仇宽彪,成军锋.陕西省植被水分利用效率及与气候因素的关系[J].水土保持研究,2015,22(6):256-260.
[7] Zhang S, Zhang J H, Bai Y, et al. Evaluation and improvement of the daily boreal ecosystem productivity simulator in simulating gross primary productivity at 41 flux sites across Europe[J]. Ecological Modelling, 2018,368:205-232.
[8] Campioli M, Gielen B, Göckede M, et al. Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest[J]. Biogeosciences, 2011,8(9):2481-2492.
[9] Yuan W P, Liu S G, Zhou G S, et al. Deriving a light use effciency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural and Forest Meteorology, 2007,143(3):189-207.
[10] Zhang Y Q, Yu Q, Jiang J, et al. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau[J]. Global Change Biology, 2008,14(4):757-767.
[11] Proietti C, Anav A, De Marco A, et al. A multi-sites analysis on the ozone effects on Gross Primary Production of European forests[J]. Science of the Total Environment, 2016,556:1-11.
[12] 郑飞鸽,易桂花,张廷斌,等.三江源植被碳利用率动态变化及其对气候响应[J].中国环境科学,2020,40(1):401-413.
[13] Du L, Mikle N, Zou Z H, et al. Global patterns of extreme drought-induced loss in land primary production: Identifying ecological extremes from rain-use efficiency[J]. Science of the Total Environment, 2018,628:611-620.
[14] Shi Z, Thomey M L, Mowll W, et al. Differential effects of extreme drought on production and respiration: Synthesis and modeling analysis[J]. Biogeosciences, 2014,11(10):621-633.
[15] Wang X F, Ma M G, Li X, et al. Validation of MODIS-GPP product at 10 flux sites in northern China[J]. International Journal of Remote Sensing, 2013,34(2):587-599.
[16] Tin H C, Lomas M W, Ishizaka J. Satellite-derived estimates of primary production during the Sargasso Sea winter/spring bloom: Integration of in-situ time-series data and ocean color remote sensing observations[J]. Regional Studies in Marine Science, 2016,3:131-143.
[17] Corton J, Donnison I S, Patel M, et al. Expanding the biomass resource: Sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes[J]. Applied Energy, 2016,177:852-862.
[18] 牛忠恩,闫慧敏,陈静清,等.基于VPM和MOD17产品的中国农田生态系统总初级生产力估算比较[J].农业工程学报,2016,32(4):191-198.
[19] Thornton P E, Law B, Gholz H L, et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agricultural and Forest Meteorology, 2002,113:185-222.
[20] Parton W J, Scurlock J, Ojima D S, et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global Biogeochemical Cycles, 1993,7(4):785-809.
[21] 马明国,汤旭光,韩旭军,等.西南岩溶地区碳循环观测与模拟研究进展和展望[J].地理科学进展,2019,38(8):1196-1205.
[22] Yan H, Wang S, Wang J, et al. Multi-model analysis of climate impacts on plant photosynthesis in China during 2000—2015[J]. International Journal of Climatology, 2019,39(15):5539-5555.
[23] 张心竹,王鹤松,延昊,等.2001—2018年中国总初级生产力时空变化的遥感研究[J].生态学报,2021,41(16):6351-6362.
[24] Jia B H, Luo X, Cai X, et al. Impacts of land-use change and elevated CO2on the interannual variations and seasonal cycles of gross primary productivity in China[J]. Earth System Dynamics Discussions, 2020,11(1):235-249.
[25] Yao Y T, Wang X H, Li Y, et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years[J]. Global Change Biology, 2018,24(1):184-196.
[26] Ma J, Xiao X, Miao R, et al. Trends and controls of terrestrial gross primary productivity of China during 2000—2016[J]. Environmental Research Letters, 2019,14(8):084032.
[27] Zheng Y, Shen R Q, Wang Y W, et al. Improved estimate of global gross primary production for reproducing its long-term variation, 1982—2017[J]. Earth System Science Data, 2020,12(4):2725-2746.
[28] 孟丹,李小娟,宫辉力,等.京津冀地区NDVI变化及气候因子驱动分析[J].地球信息科学学报,2015,17(8):1001-1007.
[29] 初小静,韩广轩.气温和降雨量对中国湿地生态系统CO2交换的影响[J].应用生态学报,2015,26(10):2978-2990.
[30] 何勇,董文杰,郭晓寅,等.基于MODIS的中国陆地植被生长及其与气候的关系[J].生态学报,2007,27(12):5086-5092.
[31] 郭连发,来全,伊博力,等.2000—2014年呼伦贝尔沙地河流湿地植被NPP时空变化及驱动力分析[J].水土保持研究,2017,24(6):267-272.
[32] Guo Q, Hu Z M, Li S G, et al. Contrasting responses of gross primary productivity to precipitation events in a water-limited and a temperature-limited grassland ecosystem[J]. Agricultural and Forest Meteorology, 2015,214:169-177.
[33] Gao Y, Jia J J, Lu Yao, et al. Determining dominating control mechanisms of inland water carbon cycling processes and associated gross primary productivity on regional and global scales[J]. Earth-Science Reviews, 2021,213:103497.
[34] 张继平,刘春兰,郝海广,等.基于MODIS GPP/NPP数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究[J].生态环境学报,2015,24(1):8-13.
[35] Li C, Sun G, Cohen E, et al. Modeling the impacts of urbanization on watershed-scale gross primary productivity and tradeoffs with water yield across the conterminous United States[J]. Journal of Hydrology, 2020,583:124581.
[1]谢胜金,刘永和,姚风欣.1998-2015年北京市NDVI时空变化及其与气候因子的响应关系[J].水土保持研究,2020,27(03):190.
XIE Shengjin,LIU Yonghe,YAO Fengxin.Spatial-Temporal Characteristics of NDVI and Its Relationship with Climate Change in Beijing from 1998 to 2015[J].Research of Soil and Water Conservation,2020,27(04):190.
[2]田义超,王世杰,白晓永,等.桐梓河流域径流对气候和人类活动的响应[J].水土保持研究,2020,27(03):76.
TIAN Yichao,WANG Shijie,BAI Xiaoyong,et al.Response of Runoff to Climate and Human Activities in Tongzi River Basin[J].Research of Soil and Water Conservation,2020,27(04):76.
[3]张 凯,鲁克新,李 鹏,等.近60年汾河中上游水沙变化趋势及其驱动因素[J].水土保持研究,2020,27(04):54.
ZHANG Kai,LU Kexin,LI Peng,et al.Trend of Runoff and Sediment Change and Its Driving Factors in the Middle and Upper Reaches of Fenhe River in the Past 60 Years[J].Research of Soil and Water Conservation,2020,27(04):54.
[4]孔 蕊,张增信,张凤英,等.长江流域森林碳储量的时空变化及其驱动因素分析[J].水土保持研究,2020,27(04):60.
KONG Rui,ZHANG Zengxin,ZHANG Fengying,et al.Spatial and Temporal Dynamics of Forest Carbon Storage and Its Driving Factors in the Yangtze River Basin[J].Research of Soil and Water Conservation,2020,27(04):60.
[5]李 丹,吴秀芹,张靖宙,等.西南喀斯特断陷盆地植被物候动态变化及其与气候因子的响应[J].水土保持研究,2020,27(06):168.
LI Dan,WU Xiuqin,ZHANG Jingzhou,et al.Vegetation Phenology Change and Response to Climate Change in the Karst Faulted Basin of Southwest China[J].Research of Soil and Water Conservation,2020,27(04):168.
[6]同琳静,刘洋洋,章钊颖,等.定量评估气候变化与人类活动对西北地区草地变化的相对作用[J].水土保持研究,2020,27(06):202.
TONG Linjing,LIU Yangyang,ZHANG Zhaoying,et al.Quantitative Assessment on the Relative Effects of Climate Variation and Human Activities on Grassland Dynamics in Northwest China[J].Research of Soil and Water Conservation,2020,27(04):202.
[7]李婷婷,马 超,郭增长.2004-2015年贺兰山自然保护区植被NPP时空变化与气候响应[J].水土保持研究,2020,27(06):254.
LI Tingting,MA Chao,GUO Zengzhang.Response of Spatiotemporal Change of NPP to Climate in Helanshan Mountain Nature Reserve from 2004 to 2015[J].Research of Soil and Water Conservation,2020,27(04):254.
[8]李思楠,赵筱青,谭 琨,等.孟加拉国博多河流域NDVI时空变化及其与气候因子的相关性[J].水土保持研究,2021,28(01):139.
LI Sinan,ZHAO Xiaoqing,TAN Kun,et al.Spatiotemporal Variation of NDVI and Its Relationship with Climate in Padma River Basin of Bangladesh.[J].Research of Soil and Water Conservation,2021,28(04):139.
[9]薛晓玉,王晓云,段含明,等.北方农牧交错带植被NPP的时空变化及其驱动因子分析[J].水土保持研究,2021,28(02):190.
XUE Xiaoyu,WANG Xiaoyun,DUAN Hanming,et al.Temporal and Spatial Changes of NPP and Its Causes in the Agricultural Pastoral Ecotone of Northern China[J].Research of Soil and Water Conservation,2021,28(04):190.
[10]王丽霞,丁慧兰,刘 招,等.基于CASA模型探究泾河流域植被NPP时空动态及其对气候变化的响应[J].水土保持研究,2022,29(01):190.
WANG Lixia,DING Huilan,LIU Zhao,et al.Spatiotemporal Change of NPP Based on CASA Model and Its Response to Climate Change in Jing River Basin[J].Research of Soil and Water Conservation,2022,29(04):190.
收稿日期:2021-06-10 修回日期:2021-07-15
资助项目:国家自然科学基金(41801013); 江苏省自然科学基金(BK20180939); 国家重点研发计划(2018YFC1506100,2018YFC1506102); 江苏省气象局科研资助项目(KZ201905,KQ202118,KQ202013)
第一作者:高振翔(1988—),男,江苏宿迁人,硕士,工程师,主要从事气象与生态环境遥感研究。E-mail:ymbukn88@126.com
通信作者:李成(1988—),男,江苏南京人,博士,讲师,主要从事地气交换与气候变化研究。E-mail:licheng_nj@163.com