[1]苏卓侠,苏冰倩,上官周平.植物凋落物分解对土壤有机碳稳定性影响的研究进展[J].水土保持研究,2022,29(02):406-413.
 SU Zhuoxia,SU Bingqian,SHANGGUAN Zhouping.Advances in Effects of Plant Litter Decomposition on the Stability of Soil Organic Carbon[J].Research of Soil and Water Conservation,2022,29(02):406-413.
点击复制

植物凋落物分解对土壤有机碳稳定性影响的研究进展

参考文献/References:

[1] Lehmann J, Kleber M. The contentious nature of soil organic matter[J]. Nature, 2015,528(7580):60-68.
[2] Paustian K, Lehmann J, Ogle S, et al. Climate-smart Soils[J]. Nature, 2016,532(7597):49-57.
[3] Hobley E, Willgoose G R, Frisia S, et al. Stability and storage of soil organic carbon in a heavy-textured Karst soil from south-eastern Australia[J]. Soil Research, 2014,52(5):476-482.
[4] Zhong Y, Yan W, Wang R, et al. Differential responses of litter decomposition to nutrient addition and soil water availability with long-term vegetation recovery[J]. Biology and Fertility of Soils, 2017,53(8):939-949.
[5] Rubino M, Dungait J A J, Evershed R P, et al. Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidences from a 13C labelled-leaf litter experiment[J]. Soil Biology and Biochemistry, 2010,42(7):1009-1016.
[6] 王凤友.森林凋落量研究综述[J].生态学进展,1989,6(2):82-89.
[7] 刘增文,高文俊,潘开文,等.枯落物分解研究方法和模型讨论[J].生态学报,2006,26(6):1993-2000.
[8] Wu J, Zhang D, Chen Q, et al. Shifts in soil organic carbon dynamics under detritus input manipulations in a coniferous forest ecosystem in subtropical China[J]. Soil Biology and Biochemistry, 2018,126:1-10.
[9] 曲浩,赵学勇,赵哈林,等.陆地生态系统凋落物分解研究进展[J].草业科学,2010,27(8):44-51.
[10] 王玉哲,刘先,胡亚林.核磁共振技术在森林凋落物分解研究中的应用[J].生态学杂志,2017,36(11):3311-3320.
[11] Almeida L F J, Hurtarte L C C, Souza I F, et al. Soil organic matter formation as affected by eucalypt litter biochemistry: evidence from an incubation study[J]. Geoderma, 2018,312:121-129.
[12] Poirier V, Roumet C, Munson A D. The root of the matter: linking root traits and soil organic matter stabilization processes[J]. Soil Biology and Biochemistry, 2018,120:246-259.
[13] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987,51(5):1173-1179.
[14] 张国,曹志平,胡婵娟.土壤有机碳分组方法及其在农田生态系统研究中的应用[J].应用生态学报,2011,22(7):1921-1930.
[15] Dijkstra F A, Zhu B, Cheng W. Root effects on soil organic carbon: a double-edged sword[J]. New Phytologist, 2021,230(1): 60-65.
[16] 李玲,仇少君,刘京涛,等.土壤溶解性有机碳在陆地生态系统碳循环中的作用[J].应用生态学报,2012,23(5):1407-1414.
[17] Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995,46(7):1459-1466.
[18] Han L, Sun K, Jin J, et al. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology and Biochemistry, 2016,94:107-121.
[19] Marschner B, Brodowski S, Dreves A, et al. How relevant is recalcitrance for the stabilization of organic matter in soils[J]. Journal of Plant Nutrition and Soil Science, 2008,171(1):91-110.
[20] Lorenz K, Lal R. Soil organic carbon sequestration in agroforestry systems: A review[J]. Agronomy for Sustainable Development, 2014,34(2):443-454.
[21] Kögel-Knabner I, Guggenberger G, Kleber M, et al. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry[J]. Journal of Plant Nutrition and Soil Science, 2008,171(1):61-82.
[22] Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017,2(8):1-6.
[23] Handa I T, Aerts R, Berendse F, et al. Consequences of biodiversity loss for litter decomposition across biomes[J]. Nature, 2014,509(7499):218-221.
[24] Palviainen M, Finér L, Kurka A M, et al. Release of potassium, calcium, iron and aluminium from Norway spruce, Scots pine and silver birch logging residues[J]. Plant and Soil, 2004,259(1): 123-136.
[25] McBride S G, Choudoir M, Fierer N, et al. Volatile organic compounds from leaf litter decomposition alter soil microbial communities and carbon dynamics[J]. Ecology, 2020, 101(10): DOI:10.1002/ecy.3130.
[26] Xiong X, Zhou G, Zhang D. Soil organic carbon accumulation modes between pioneer and old-growth forest ecosystems[J]. Journal of Applied Ecology, 2020,57(12):2419-2428.
[27] Fang X, Zhao L, Zhou G, et al. Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests[J]. Plant and Soil, 2015,392(1):139-153.
[28] Mitchell E, Scheer C, Rowlings D, et al. Trade-off between ‘new' SOC stabilisation from above-ground inputs and priming of native C as determined by soil type and residue placement[J]. Biogeochemistry, 2020,149(2):221-236.
[29] Wang M, Tian Q, Liao C, et al. The fate of litter-derived dissolved organic carbon in forest soils: results from an incubation experiment[J]. Biogeochemistry, 2019,144(2):133-147.
[30] Fekete I, Kotroczó Z, Varga C, et al. Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest[J]. Soil Biology and Biochemistry, 2014,74:106-114.
[31] Zhang Y, Zou J, Meng D, et al. Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: A meta-analysis[J]. Ecology and Evolution, 2020,10(24):13602-13612.
[32] 吕富成,王小丹.凋落物对土壤呼吸的贡献研究进展[J].土壤,2017,49(2):225-231.
[33] Zhong Y, Yan W, Wang R, et al. Decreased occurrence of carbon cycle functions in microbial communities along with long-term secondary succession[J]. Soil Biology and Biochemistry, 2018,123:207-217.
[34] Yan W, Zhong Y, Zhu G, et al. Nutrient limitation of litter decomposition with long-term secondary succession: evidence from controlled laboratory experiments[J]. Journal of Soils and Sediments, 2020,20(4):1858-1868.
[35] Wang Q, Yu Y, He T, et al. Aboveground and belowground litter have equal contributions to soil CO2 emission: An evidence from a 4-year measurement in a subtropical forest[J]. Plant and Soil, 2017,421(1):7-17.
[36] Thiessen S, Gleixner G, Wutzler T, et al. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass: An incubation study[J]. Soil Biology and Biochemistry, 2013,57:739-748.
[37] 王清奎.碳输入方式对森林土壤碳库和碳循环的影响研究进展[J].应用生态学报,2011,22(4):1075-1081.
[38] Liu X J A, Finley B K, Mau R L, et al. The soil priming effect: consistent across ecosystems, elusive mechanisms[J]. Soil Biology and Biochemistry, 2020, 140.DOI:10.1016/j.soilbio.2019.107617.
[39] Fanin N, Alavoine G, Bertrand I. Temporal dynamics of litter quality, soil properties and microbial strategies as main drivers of the priming effect[J]. Geoderma, 2020,377.DOI:10.1016/j.geoderma.2020.114576.
[40] Yu G, Zhao H, Chen J, et al. Soil microbial community dynamics mediate the priming effects caused by in situ decomposition of fresh plant residues[J]. Science of the Total Environment, 2020,737.DOI:10.1016/j.scitotenv.2020.139708.
[41] Wang Q, He T, Liu J. Litter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils[J]. Scientific Reports, 2016,6(1):1-8.
[42] Chen S, Wu J. The sensitivity of soil microbial respiration declined due to crop straw addition but did not depend on the type of crop straw[J]. Environmental Science and Pollution Research, 2019,26(29):30167-30176.
[43] Ma Y, McCormick M K, Szlavecz K, et al. Controls on soil organic carbon stability and temperature sensitivity with increased aboveground litter input in deciduous forests of different forest ages[J]. Soil Biology and Biochemistry, 2019,134:90-99.
[44] Creamer C A, de Menezes A B, Krull E S, et al. Microbial community structure mediates response of soil C decomposition to litter addition and warming[J]. Soil Biology and Biochemistry, 2015,80:175-188.
[45] 万晓华,黄志群,何宗明,等.改变碳输入对亚热带人工林土壤微生物生物量和群落组成的影响[J].生态学报,2016,36(12):3582-3590.
[46] Chen Y, Ma S, Jiang H, et al. Influences of litter diversity and soil moisture on soil microbial communities in decomposing mixed litter of alpine steppe species[J]. Geoderma, 2020,377.DOI:10.1016/j.geoderma.2020.114577.
[47] Zhang Y, Li X, Zhang D, et al. Characteristics of fungal community structure during the decomposition of mixed foliage litter from Pinus massoniana and broadleaved tree species in southwestern China[J]. Journal of Plant Ecology, 2020,13(5):574-588.
[48] 陈法霖,张凯,向丹,等.桉树凋落物对土壤微生物群落的影响:基于控制试验研究[J].土壤学报,2019,56(2):432-442.
[49] 龙健,赵畅,张明江,等.不同坡向凋落物分解对土壤微生物群落的影响[J].生态学报,2019,39(8):2696-2704.
[50] 李雅,刘梅,曾全超,等.基于文献计量的土壤有机碳与土壤微生物多样性研究前沿态势分析[J].土壤通报,2017,48(3):745-756.
[51] Hu Y L, Wang S L, Zeng D H. Effects of single Chinese fir and mixed leaf litters on soil chemical, microbial properties and soil enzyme activities[J]. Plant and Soil, 2006,282(1):379-386.
[52] Bońska E, Piaszczyk W, Staszel K, et al. Enzymatic activity of soils and soil organic matter stabilization as an effect of components released from the decomposition of litter[J]. Applied Soil Ecology, 2021,157.DOI:10.1016/j.apsoil.2020.103723.
[53] Ge X, Xiao W, Zeng L, et al. Relationships between soil-litter interface enzyme activities and decomposition in Pinus massoniana plantations in China[J]. Journal of Soils and Sediments, 2017,17(4):996-1008.
[54] Tian L, Shi W. Short-term effects of plant litter on the dynamics, amount, and stoichiometry of soil enzyme activity in agroecosystems[J]. European Journal of Soil Biology, 2014,65:23-29.
[55] Xu H, Qu Q, Lu B, et al. Variation in soil organic carbon stability and driving factors after vegetation restoration in different vegetation zones on the Loess Plateau, China[J]. Soil and Tillage Research, 2020,204.DOI:10.1016/j.still.2020.104727.
[56] Chen L, Fang K, Wei B, et al. Soil carbon persistence governed by plant input and mineral protection at regional and global scales[J]. Ecology Letters, 2021,24(5):1018-1028.
[57] Xu H, Qu Q, Wang M, et al. Soil organic carbon sequestration and its stability after vegetation restoration in the Loess Hilly Region, China[J]. Land Degradation & Development, 2020,31(5):568-580.

相似文献/References:

[1]王一佩,孙美美,程然然,等.黄土高原中西部人工针叶林浅层土壤有机碳积累及影响因素[J].水土保持研究,2020,27(03):30.
 WANG Yipei,SUN Meimei,CHENG Ranran,et al.Accumulation of Soil Organic Carbon and Its Influencing Factors in Coniferous Plantations in the Midwestern Loess Plateau[J].Research of Soil and Water Conservation,2020,27(02):30.
[2]袁晓良,李俊雅,葛 乐,等.不同土地利用方式对土壤团聚体稳定性及其导水率的影响[J].水土保持研究,2020,27(04):67.
 YUAN Xiaoliang,LI Junya,GE Le,et al.Effects of Different Land Use Patterns on Soil Aggregate Stability and Saturated Hydraulic Conductivity[J].Research of Soil and Water Conservation,2020,27(02):67.
[3]刘 琳,余佳洁,周文静.不同园林植物土壤活性有机碳组分及有机碳储量[J].水土保持研究,2020,27(05):38.
 LIU Lin,YU Jiajie,ZHOU Wenjing.Soil Active Organic Carbon Components and Organic Carbon Reserves Under Different Garden Plants[J].Research of Soil and Water Conservation,2020,27(02):38.
[4]王丽梅,张 谦,白利华,等.毛乌素沙地3种人工植被类型对土壤颗粒组成和固碳的影响[J].水土保持研究,2020,27(01):88.
 WANG Limei,ZHANG Qian,BAI Lihua,et al.Effects of Three Artificial Vegetation Types on Soil Particle Composition and Carbon Fixation in the Mu Us Sandy Land[J].Research of Soil and Water Conservation,2020,27(02):88.
[5]刘 杨,李 菊,孙 辉,等.海拔梯度上川西高山土壤有机碳稳定性研究[J].水土保持研究,2020,27(02):123.
 LIU Yang,LI Ju,SUN Hui,et al.Stability of Soil Organic Carbon Along the Altitudinal Gradient in Alpine of the West of Sichuan Province[J].Research of Soil and Water Conservation,2020,27(02):123.
[6]胡延斌,肖国举,仇正跻,等.西北半干旱区农田土壤有机碳和全氮分布特征及其对地膜玉米产量的影响[J].水土保持研究,2021,28(01):58.
 HU Yanbin,XIAO Guoju,QIU Zhengji,et al.Distribution Characteristics of Soil Organic Carbon and Total Nitrogen and Its Influence on Film-Mulched Maize in Farmland in Northwest Semiarid Region[J].Research of Soil and Water Conservation,2021,28(02):58.
[7]孟 猛,徐永艳.植物光合碳在不同器官—土壤系统的动态分布特征13C示踪[J].水土保持研究,2021,28(01):331.
 MENG Meng,XU Yongyan.13C Traces the Dynamic Distribution Characteristics of Photosynthetic Carbon of Different Plants in Different Organ-Soil Systems[J].Research of Soil and Water Conservation,2021,28(02):331.
[8]刘思璇,高建恩,李文证,等.黄土丘陵区边坡开挖对土壤抗蚀性影响[J].水土保持研究,2022,29(02):23.
 LIU Sixuan,GAO Jianen,LI Wenzheng,et al.Effect of Slope Excavation on Anti-Erosion of Soil in Loess Hilly Region[J].Research of Soil and Water Conservation,2022,29(02):23.
[9]纪昌品,张晓平.鄱阳湖不同湿地植物群落光合碳储量及分配[J].水土保持研究,2022,29(03):121.
 JI Changpin,ZHANG Xiaoping.Photosynthetic Carbon Storage and Distribution in Different Wetland Communities in Poyang Lake[J].Research of Soil and Water Conservation,2022,29(02):121.
[10]赵 晶,刘美英,郝孟婕,等.植被恢复对干旱区生态光伏电站土壤团聚体组成及有机碳的影响[J].水土保持研究,2022,29(05):137.
 ZHAO Jing,LIU Meiying,HAO Mengjie,et al.Effects of Vegetation Restoration on Soil Aggregate Composition and Organic Carbon of Eco-Photovoltaic Power Station in Arid Area[J].Research of Soil and Water Conservation,2022,29(02):137.

备注/Memo

收稿日期:2021-03-04 修回日期:2021-04-03
资助项目:国家自然科学基金(42077452,41771549)
第一作者:苏卓侠(1997—),女,山西临汾人,博士研究生,研究方向为植物凋落物分解与土壤固碳。E-mail:SZX1212@nwafu.edu.cn
通信作者:上官周平(1964—),男,陕西扶风人,研究员,博士生导师,主要从事旱地农业、植物生态研究。E-mail:Shangguan@ms.iswc.ac.cn

更新日期/Last Update: 2022-04-20