[1]王 佳,陈 伟,张 强,等.低氮胁迫对不同耐瘠性苦荞土壤氮转化酶活性的影响[J].水土保持研究,2021,28(05):47-53.
 WANG Jia,CHEN Wei,ZHANG Qiang,et al.Effects of Low Nitrogen Stress on Soil Nitrogen Converting Enzyme Activities Under Different Kinds of Tartary Buckwheat[J].Research of Soil and Water Conservation,2021,28(05):47-53.
点击复制

低氮胁迫对不同耐瘠性苦荞土壤氮转化酶活性的影响

参考文献/References:

[1] Jiang S,Liu Q,Xie Y,et al. Separation of five flavonoids from tartary buckwheat(Fagopyrum tataricum(L.)Gaertn)grains via off-line two dimensional high-speed counter-current chromatography[J]. Food Chemistry,2015,186:153-159.
[2] Peng W,Hu C,Shu Z,et al. Antitumor activity of tatariside F isolated from roots of Fagopyrum tataricum(L.)Gaertn against H22 hepatocellular carcinoma via up-regulation of p53[J]. Phytomedicine,2015,22(7/8):730-736.
[3] 黄兴富,赵声定,孙浩岩,等.荞麦中黄酮类化合物的研究进展[J].中国民族民间医药,2010,19(7):24-25.
[4] Irvin N A,Bistline-East A,Hoddle M S. The effect of an irrigated buckwheat cover crop on grape vine productivity,and beneficial insect and grape pest abundance in southern California[J]. Biological Control,2016,93:72-83.
[5] 王鹏科,高金锋,高小丽,等.苦荞地方种质资源的遗传多样性分析[J].西北植物学报,2010,30(2),255-261.
[6] 王慧,杨媛,杨明君,等.晋北地区旱作苦荞麦品种筛选[J].山西农业科学,2013,41(4):321-323.
[7] Jeong H L,Kee J P,Bum K K,et al. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat(Fagopyrum esculentum M.)sprout[J]. Food Chemistry,2012,135(3):1065-1070.
[8] Yao Y,Xuan Z,Yuan L,et al. Effects of ultraviolet-B radiation on crop growth,development,yield and leaf pigment concentration of tartary buckwheat(Fagopyrum tataricum)under field conditions[J]. European Journal of Agronomy,2006,25(3):215-222.
[9] 张锡洲,李廷轩,王永东.植物生长环境与根系分泌物的关系[J].土壤通报,2007,38(4):785-789.
[10] 张楚,张永清,路之娟,等.低氮胁迫对不同苦荞品种苗期生长和根系生理特征的影响[J].西北植物学报,2017,37(7):1331-1339.
[11] 赵涛,高小丽,高扬,等.轮作及连作条件下荞麦功能叶片衰老特性的比较[J].西北农业学报,2015,24(11):87-94.
[12] 刘拥海,俞乐,彭新湘.不同氮素形态培养下荞麦叶片中草酸积累的变化[J].广西植物,2007,27(4):616-621.
[13] Shi B,Zhang J,Wang C,et al. Responses of hydrolytic enzyme activities in saline-alkaline soil to mixed inorganic and organic nitrogen addition[J]. Scientific Reports,2018,8(1):1-12.
[14] Jia X,Li X D,Zhao Y H,et al. Soil microbial community structure in the rhizosphere of Robinia pseudoacacia L. seedlings exposed to elevated air temperature and cadmium-contaminated soils for 4 years[J]. Science of the Total Environment,2019,650:2355-2363.
[15] 陈伟,崔亚茹,杨洋,等.苦荞根系分泌有机酸对低氮胁迫的响应机制[J].土壤通报,2019,50(1):149-156.
[16] 陈伟,孙从建,李卫红.低氮胁迫下苦荞根际土壤纤维素酶活性的响应机制:荧光光谱法测定[J].光谱学与光谱分析,2018,38(10):3159-3162.
[17] 陈伟,杨洋,崔亚茹,等.低氮对苦荞苗期土壤碳转化酶活性的影响[J].干旱地区农业研究,2019,37(4):132-138.
[18] Poitout A,Crabos A,Petrik I,et al. Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-Zeatin in Shoots[J]. The Plant Cell,2018,30(6):1243-1257.
[19] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2007.
[20] Kandeler. Methods in Soil Biology[M]. Springer-Verlag,1996:426.
[21] Ladd J N,Butler J H A. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates[J]. Soil Biology and Biochemistry,1972,4(1):19-30.
[22] Wardle D A. Communities and Ecosystems:linking the aboveground and belowground components [M]. Princeton: Princeton University Press,2013.
[23] Bradley J A,Amend J P,Larowe D E. Bioenergetic controls on microbial ecophysiology in marine sediments[J]. Frontiers in Microbiology,2018,9:180,doi:10,3389/fmicb.2018.00180.
[24] Hall E K,Bernhardt E S,Bier R L,et al. Understanding how microbiomes influence the systems they inhabit[J]. Nature Microbiology,2018,3(9):977-982.
[25] Chen W,Hou H X,Sun C J,et al. The effect of elevated ozone concentration on enzymes increases NO-3 content in the soil at the jointing stage of wheat field[J]. European Journal of Soil Biology,2018,89:14-19.
[26] Knoepp J D,Turner D P,Tingey D T. Effects of ammonium and nitrate on nutrient uptake and activity of nitrogen assimilating enzymes in western hemlock[J]. Forest Ecology and Management,1993,59(3/4):179-191.
[27] Eliis S,Howe M T,Goulding K W T,et al. Carbon and nitrogen dynamics in a grassland soil with varying pH:effect of pH on the denitrification potential and dynamics of the reduction enzymes[J]. Soil Biology and Biochemistry,1998,30(3):359-367.
[28] Geddes B A,Paramasivan P,Joffrin A,et al. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria[J]. Nature Communications,2019,10(1):1-11.
[29] 陈伟,皇甫倩华,孙从建,等.大气O3升高对小麦根际土壤微生物量和氮素转化酶活性的影响[J].土壤通报,2017,48(3):623-630.
[30] 任如冰.不同施肥方式对土壤钾素有效性及番茄产量品质的影响[D].沈阳:沈阳农业大学,2018.
[31] Geisseler D,Horwath W R. Relationship between carbon and nitrogen availability and extracellular enzyme activities in soil[J]. Pedobiologia,2009,53(1):87-98.
[32] Wang C,Liu D W,Bai E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition[J]. Soil Biology and Biochemistry,2018,120:126-133.
[33] Crowther T W,Van den Hoogen J,Wan J,et al. The global soil community and its influence on biogeochemistry[J]. Science,2019,365(6455),DOI:10,1126/science. aav0550.
[34] Berendsen R L,Pieterse C M J,Bakker P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science,2012,17(8):478-486.
[35] Donaldson M A,Bish D L,Raff J D. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid[J]. Proceedings of the National Academy of Sciences,2014,111(52):18472-18477.
[36] Fish M A,Fahey T. Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests [J]. Biogeochemistry,2001,53(2):201-223.
[37] 陈伟,崔亚茹,孙从建,等.低氮胁迫下不同苦荞品种开花前土壤养分含量特征[J].水土保持研究,2019,26(4):151-156.
[38] Utriainen J,Holopainen T. Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system[J]. Tree Physiology,2001,21(16):1205-1213.
[39] Pivato B,Bru D,Busset H,et al. Positive effects of plant association on rhizosphere microbial communities depend on plant species involved and soil nitrogen level[J]. Soil Biology and Biochemistry,2017,114:1-4.
[40] 张楚,张永清,路之娟,等.苗期耐低氮基因型苦荞的筛选及其评价指标[J].作物学报,2017,43(8):1205-1215.
[41] Dennis P G,Miller A J,Hirsch P R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities?[J]. Fems Microbiol Ecol.,2010,72(3):313-327.

相似文献/References:

[1]陈伟,崔亚茹,孙从建,等.低氮胁迫下不同苦荞品种开花前土壤养分含量特征[J].水土保持研究,2019,26(04):151.
 CHEN Wei,CUI Yaru,SUN Congjian,et al.Characteristics of Soil Nutrient Contents in the Fields of Different Cultivated Varieties of Fagopyrum tataricum Before Flowering Under Low Nitrogen Stress[J].Research of Soil and Water Conservation,2019,26(05):151.

备注/Memo

收稿日期:2020-10-26 修回日期:2020-11-03
资助项目:山西省研究生教改项目(2019JG123); 山西省留学人员科技活动择优资助项目(2020020); 山西省回国留学人员科研资助项目(2020-092)山西省高校科技创新项目(2020L0238,2020L0240); 国家青年资助项目(41601317)
第一作者:王佳(1994—),女,山西省运城市人,在读研究生,主要从事土壤养分及土壤酶学的研究。E-mail:jiawang1716@163.com
通信作者:陈伟(1987—),女,辽宁省铁岭市人,副教授,博士,主要从事土壤酶学及微生物学方面的研究。E-mail:wan_xin_chen@126.com

更新日期/Last Update: 2021-08-20