[1]张 昊,李建平.稳定碳同位素在草地生态系统碳循环中的应用与展望[J].水土保持研究,2021,28(01):394-400.
 ZHANG Hao,LI Jianping.Application and Prospect of Stable Carbon Isotope to the Study of Carbon Cycle in Grassland Ecosystem[J].Research of Soil and Water Conservation,2021,28(01):394-400.
点击复制

稳定碳同位素在草地生态系统碳循环中的应用与展望

参考文献/References:

[1] 樊江文,钟华平,梁飚,等.草地生态系统碳储量及其影响因素[J].中国草地学报,2003,25(6):52-59.
[2] Paustian K, Lehmann J, Ogle S, et al. Climate-smart soils[J]. Nature, 2016,532(7597):49-57.
[3] 李学斌,樊瑞霞,刘学东.中国草地生态系统碳储量及碳过程研究进展[J].生态环境学报,2014,23(11):1845-1851.
[4] Fang J Y, Yang Y H, Ma W H, et al. Ecosystem carbon stocks and their changes in China's grasslands[J]. Science China Life Sciences, 2010,53(7):757-765.
[5] 林光辉.稳定同位素生态学:先进技术推动的生态学新分支[J].植物生态学报,2010,34(2):119-122.
[6] Battle M, Bender M L, Tans P P, et al. Global carbon sinks and their variability inferred from atmospheric O2 and δ13 C[J]. Science, 2000,287(5462):2467-2470.
[7] Cheng X, Yang Y, Li M, et al. The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou Reservoir area of China[J]. Plant and Soil, 2013,366(1/2):415-424.
[8] Sun Z L, Gao Q F, Dong S L, et al. Estimates of carbon turnover rates in the sea cucumber Apostichopus japonicas(Selenka)using stable isotope analysis:The role of metabolism and growth[J]. Marine Ecology Progress Series, 2012,457:101-112.
[9] Zhao Y, Wang X, Ou Y, et al. Variations in soil δ13 C with alpine meadow degradation on the eastern Qinghai-Tibet Plateau[J]. Geoderma, 2019,338:178-186.
[10] Liu Q, Tossell J A, Liu Y. On the proper use of the Bigeleisen-Mayer equation and corrections to it in the calculation of isotopic fractionation equilibrium constants[J]. Geochimica et Cosmochimica Acta, 2010,74(24):6965-6983.
[11] Smith J A, Mazumder D, Suthers I M, et al. To fit or not to fit:evaluating stable isotope mixing models using simulated mixing polygons[J]. Methods in Ecology and Evolution, 2013,4(7):612-618.
[12] Liu Y, Ge T, Zhu Z, et al. Carbon input and allocation by rice into paddy soils:A review[J]. Soil Biology and Biochemistry, 2019,133:97-107.
[13] Fang Y T, Koba K, Makabe A, et al. Microbial denitrification dominates nitrate losses from forest ecosystems[J]. Proceedings of the National Academy of Sciences, 2015,112(5):1470-1474.
[14] 张蕊,赵钰,何红波,等.基于稳定碳同位素技术研究大气CO2浓度升高对植物—土壤系统碳循环的影响[J].应用生态学报,2017,28(7):2379-2388.
[15] Cook G D, Williams R J, Hutley L B, et al. Variation in vegetative water use in the savannas of the North Australian Tropical Transect[J]. Journal of Vegetation Science, 2002,13(3):413-418.
[16] 郑兴波,张岩,顾广虹.碳同位素技术在森林生态系统碳循环研究中的应用[J].生态学杂志,2005,24(11):84-88.
[17] 袁红朝,李春勇,简燕,等.稳定同位素分析技术在农田生态系统土壤碳循环中的应用[J].同位素,2014,27(3):170-178.
[18] Farquhar G D, O'leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Functional Plant Biology, 1982,9(2):121-137.
[19] 刘贤赵,宿庆,李嘉竹,等.控温条件下C3, C4草本植物碳同位素组成对温度的响应[J].生态学报,2015,35(10):3278-3287.
[20] Wang S, Fan J, Song M, et al. Patterns of SOC and soil 13C and their relations to climatic factors and soil characteristics on the Qinghai-Tibetan Plateau[J]. Plant and Soil, 2013,363(1/2):243-255.
[21] Aranjuelo I, Erice G, Sanzsaez A, et al. Differential CO2 effect on primary carbon metabolism of flag leaves in durum wheat(Triticum durum Desf)[J]. Plant, Cell and Environment, 2015,38(12):2780-2794.
[22] Qiao Y Z, Zhang H Z, Dong B D, et al. Effects of elevated CO2 concentration on growth and water use efficiency of winter wheat under two soil water regimes[J]. Agricultural Water Management, 2010,97(11):1742-1748.
[23] Freitas H A D, Pessenda L C R, Aravena R, et al. Late Quaternary vegetation dynamics in the southern Amazon Basin inferred from carbon isotopes in soil organic matter[J]. Quaternary Research, 2001,55(1):39-46.
[24] 吴健,黄沈发,肖绍赜,等.基于碳稳定同位素的滨岸草地生态系统土壤有机碳贡献研究[J].长江流域资源与环境,2018,27(7):1584-1592.
[25] 全小龙,乔有明,段中华,等.高寒草甸植物碳氮组成及其稳定同位素特征[J].西北植物学报,2015,35(8):1650-1656.
[26] Liu W, Xing M. Isotopic indicators of carbon and nitrogen cycles in river catchments during soil erosion in the arid Loess Plateau of China[J]. Chemical Geology, 2012,296:66-72.
[27] 冯虎元,安黎哲,王勋陵.环境条件对植物稳定碳同位素组成的影响[J].植物学通报,2000,17(4):312-318.
[28] 旺罗,吕厚远,吴乃琴,等.青藏高原高海拔地区C4植物的发现[J].科学通报,2004,49(13):1290-1293.
[29] 李明财,易现峰,张晓爱,等.青海高原高寒地区C4植物名录[J].西北植物学报,2005,25(5):1046-1050.
[30] Huo L, Chen Z, Zou Y, et al. Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon[J]. Ecological Engineering, 2013,51(1):287-295. DOI:10,1016/j. ecoleng, 2012.12.020.
[31] Pan T, Hou S, Wu S H, et al. Variation of soil hydraulic properties with alpine grassland degradation in the eastern Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2017,21(4):2249-2261.
[32] Bird M I, Veenendaal E M, Lloyd J J. Soil carbon inventories and δ13C along a moisture gradient in Botswana[J]. Global Change Biology, 2004,10(3):342-349.
[33] Ehleringer J R, Buchmann N, Flanagan L B. Carbon isotope ratios in belowground carbon cycle processes[J]. Ecological Applications, 2000,10(2):412-422.
[34] Domanski G, Kuzyakov Y, Siniakina S V, et al. Carbon flows in the rhizosphere of ryegrass[J]. Journal of Plant Nutrition and Soil Science, 2001,164(4):381-387.
[35] Hafner S, Unteregelsbacher S, Seeber E, et al. Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling[J]. Global Change Biology, 2012,18(2):528-538.
[36] Wu Y B, Tan H C, Deng Y C, et al. Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field 13C pulse-labeling[J]. Global Change Biology, 2010,16(8):2322-2333.
[37] Butler J L, Bottomley P J, Griffith S M, et al. Distribution and turnover of recently fixed photosynthate in ryegrass rhizospheres[J]. Soil Biology and Biochemistry, 2004,36(2):371-382.
[38] Crawford M C, Grace P R, Oades J M. Allocation of carbon to shoots, roots, soil and rhizosphere respiration by barrel medic(Medicago truncatula)before and after defoliation[J]. Plant and Soil, 2000,227(1/2):67-75.
[39] Ge T D, Yuan H Z, Zhu H H, et al. Biological carbon assimilation and dynamics in a flooded rice-soil system[J]. Soil Biology and Biochemistry, 2012,48(4):39-46.
[40] 王群艳,祝贞科,袁红朝,等.不同生育期光合碳在水稻—土壤系统中的分配及输入效率[J].环境科学研究,2016,29(10):1471-1478.
[41] 李新乐,鲍芳,吴波,等.荒漠植物白刺新固定碳在植物—土壤系统中的分配[J].草业学报,2019,28(2):33-40.
[42] Angers D A, Giroux M. Recently deposited organic matter in soil water-stable aggregates[J]. Soil Science Society of America Journal, 1996,60(5):1547-1551.
[43] Li S, Gu X, Zhuang J, et al. Distribution and storage of crop residue carbon in aggregates and its contribution to organic carbon of soil with low fertility[J]. Soil and Tillage Research, 2016,155(S1):199-206. DOI:10,1016/j. still, 2015.08.009.
[44] O'Brien S L, Jastrow J D. Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands[J]. Soil Biology and Biochemistry, 2013,61:1-13.
[45] 邱晓蕾.不同种植模式下土壤有机碳特性研究[D].南京:南京农业大学,2015.
[46] Angers D A, Recous S, Aita C. Fate of carbon and nitrogen in water-stable aggregates during decomposition of 13C 15N-labelled wheat straw in situ[J]. European Journal of Soil Science, 1997,48(2):295-300.
[47] Six J, Bossuyt H, Degryze S, et al. A history of research on the link between(micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004,79(1):7-31.
[48] O'rourke S M, Angers D A, Holden N M, et al. Soil organic carbon across scales[J]. Global Change Biology, 2015,21(10):3561-3574.
[49] Yao H, Wilkes A, Zhu G, et al. Stable carbon isotope as a signal index for monitoring grassland degradation[J]. Scientific Reports, 2016,6:31399.
[50] 陈芃娜,王国安,韩家懋,等.贡嘎山东坡植物和土壤有机质的δ13 C差异[J].科学通报,2009,54(22):3512-3520.
[51] 姚鸿云,李小雁,郭娜,等.多年放牧对不同类型草原植被及土壤碳同位素的影响[J].应用生态学报,2019,30(2):553-562.
[52] 张月鲜,孙向阳,张林,等.我国西北地区不同类型草原土壤有机质的稳定碳同位素特征研究[J].土壤通报,2013,44(2):348-354.
[53] Li J P, Ma H B, Xie Y Z, et al. Deep soil C and N pools in long-term fenced and overgrazed temperate grasslands in northwest china[J]. Scientific Reports, 2019,9:16088.
[54] Bird M I, Chivas A R, Head J. A latitudinal gradient in carbon turnover times in forest soils[J]. Nature, 1996,381(6578):143-146.
[55] Wang C, Wei H, Liu D, et al. Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China[J]. Plant and Soil, 2017,417(1/2):43-52.
[56] Diochon A, Kellman L. Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance[J]. Geophysical Research Letters, 2008,35(14):L14402.
[57] Sachs J P, Repeta D J, Goericke R. Nitrogen and carbon isotopic ratios of chlorophyll from marine phytoplankton[J]. Geochimica et Cosmochimica Acta, 1999,63(9):1431-1441.
[58] 王丹,张荣,熊俊,等.互花米草入侵对滨海湿地土壤碳库的贡献—基于稳定同位素的研究[J].植物生态学报,2015,39(10):941-949.
[59] Román M, Fernández E, Zamborain-Mason J, et al. Anthropogenic impact on Zostera noltei seagrass meadows(NW Iberian Peninsula)assessed by carbon and nitrogen stable isotopic signatures[J]. Estuaries and Coasts, 2019,42(4):987-1000.
[60] Zhang Y H, Ding W X, Luo J F, et al. Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora[J]. Soil Biology and Biochemistry, 2010,42(10):1712-1720.
[61] 孙伟, David W.利用稳定性同位素区分河岸C4草地生态系统夜晚碳通量[J].湿地科学,2008,6(2):271-277.
[62] Kubo A, Kanda J. Seasonal variations and sources of sedimentary organic carbon in Tokyo Bay[J]. Marine Pollution Bulletin, 2017,114(2):637-643.
[63] Garcias-Bonet N, Delgado-Huertas A, Carrillo-de-Albornoz P, et al. Carbon and nitrogen concentrations, stocks, and isotopic compositions in Red Sea seagrass and mangrove sediments[J]. Frontiers in Marine Science, 2019,6:267. DOI:10,3389/fmars.2019.00267.
[64] Yu J, Zhang H. Source apportionment of sediment organic material in a semi-enclosed sea using Bayesian isotopic mixing model[J]. Marine Pollution Bulletin, 2017,119(1):365-371.
[65] Moore J W, Semmens B X. Incorporating uncertainty and prior information into stable isotope mixing models[J]. Ecology Letters, 2008,11(5):470-480.
[66] Evaristo J, Mcdonnell J J, Clemens J. Plant source water apportionment using stable isotopes:A comparison of simple linear, two-compartment mixing model approaches[J]. Hydrological Processes, 2017,31(21):3750-3758.

相似文献/References:

[1]王银山,于恩涛,何雪芬,等.艾比湖湿地主要盐生植物叶片稳定碳同位素组成研究[J].水土保持研究,2009,16(05):245.
 WANG Yin-shan,YU En-tao,HE Xue-fen,et al.A Study on Stable Carbon Isotope Composition of Main Halophytes in Ebinur Lake Wetland[J].Research of Soil and Water Conservation,2009,16(01):245.

备注/Memo

收稿日期:2020-04-17 修回日期:2020-05-01
资助项目:宁夏留学人员创新创业个人项目“半干旱区天然草地补播轮刈关键技术研究”(201813); 宁夏自然科学基金“黄土高原封育草地土壤干层动态特征研究”(2019AAC03042); 宁夏大学草学一流学科建设项目(NXYLXK2017A01)
第一作者:张昊(1997—),男,山东临清人,硕士研究生,研究方向:草地生态与模型构建。E-mail:zhanghlqq@163.com 通信作者:李建平(1982—),男,陕西延安人,博士,副教授,硕士生导师,研究方向:草地生态与模型构建。E-mail:lijianpingsas@163.com

更新日期/Last Update: 2021-01-15