[1] 张强.基于微气候数学模型的洞穴CO2迁移变化机制研究[D].贵阳:贵州师范大学,2016.
[2] 张绍云.喀斯特地区土壤—洞穴CO2迁移变化及其协同响应研究[D].贵阳:贵州师范大学,2017.
[3] 蒋忠诚,裴建国,夏日元,等.我国“十一五”期间的岩溶研究进展与重要活动[J].中国岩溶,2010,29(4):349-354.
[4] 曹明达,周忠发,张结,等.白云岩洞穴系统中水—气CO2分压对洞穴水水文化学过程的影响:以贵州双河洞为例[J].环境科学与技术,2017,40(3):54-60.
[5] 曹明达.白云岩洞穴水水文地球化学特征及其环境变化响应研究[D].贵阳:贵州师范大学,2017.
[6] 蔡炳贵,沈凛梅,郑伟,等.本溪水洞洞穴空气CO2浓度与温、湿度的空间分布和昼夜变化特征[J].中国岩溶,2009,28(4):348-354.
[7] Whitaker T, Jones D, Baldini J U L, et al. A high-resolution spatial survey of cave air carbon dioxide concentrations in Scoska Cave(North Yorkshire, UK): implications for calcite deposition and re-dissolution[J]. Cave & Karst Science, 2009,36(3):864-874.
[8] Song L H, Wang J, Liang F Y, et al. Effect of human and natural factors on the environment of show caves[J].Carsologica Sinica,2004,23(2):91-99.
[9] 张结,周忠发,曹明达,等.CO2在洞穴空气和滴水水文过程中的变化:以贵州织金洞为例[J].科学技术与工程,2016,16(30):32-38.
[10] 潘艳喜,周忠发,张结,等.喀斯特旅游洞穴微气候环境要素时空分布特征及影响因素:以贵州织金洞为例[J].科学技术与工程,2018,18(10):20-30.
[11] 王欢,曹奇,李苗发,等.福建仙云洞空气CO2浓度的空间分布及影响因素[J].亚热带资源与环境学报,2018,13(4):34-40.
[12] 张强,周忠发,陈全,等.织金洞CO2浓度空间分布与昼夜变化的规律及成因分析[J].科学技术与工程,2016,16(26):18-27.
[13] 杜金娥,张光生,王宁.蓬莱仙洞CO2浓度及温度的变化规律初探[J].中国农学通报,2008(3):395-400.
[14] Gonzalez L A, Carpente S J. Inorganic calcite morphology: roles of fluid chemistry and fluid flow[J]. SEPM Journal of Sedimentary Research, 1992,62.DOI:10.1306/D426790B-2B26-11D7-8648000102C1865D.
[15] Tooth A F, Fairchild I J. Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, Southwest Ireland[J]. Journal of Hydrology, 2003,273(1):51-68.
[16] 曾泽,蒋勇军,吕现福,等.重庆雪玉洞洞穴滴水水文地球化学时空变化特征及其环境意义[J].环境科学,2018,39(6):2641-2650.
[17] 王凤康,梁作兵,于正良,等.岩溶地下河水文地球化学对降雨的响应:以重庆雪玉洞地下河系统为例[J].环境科学,2014,35(10):3716-3721.
[18] 郭小娇,龚晓萍,袁道先,等.典型岩溶包气带洞穴滴水水文过程研究:以桂林硝盐洞为例[J].地球学报,2017,38(4):537-548.
[19] 李渊,刘子琦,吕小溪,等.贵州石漠化地区降雨期间洞穴滴水的元素变化特征:以石将军洞为例[J].山地学报,2017,35(6):799-807.
[20] 庞征,王天阳,李凤全,等.金华北山洞穴水地球化学变化特征及气候指示意义[J].水土保持研究,2016,23(5):332-337,342.
[21] Yin J J, Guo X J, Jiang G H, et al. Study on dripping traces of gully salt caves in Guilin and its climatic environment significance[J]. Journal of China Hydrology, 2017,37(4):18-23,67.
[22] 殷建军,郭小娇,姜光辉,等.桂林硝盐洞洞穴滴水示踪及气候环境意义研究[J].水文,2017,37(4):18-23,67.
[22] 袁道先.中国岩溶动力系统[M].北京:地质出版社,2002.
[23] 周超.旅游洞穴系统中二氧化碳浓度变化及运移机制研究[D].重庆:西南大学,2011.
[24] 张美良,朱晓燕,吴夏,等.洞穴次生化学碳酸盐沉积物—石笋的气候替代指标的意义与不确定性因素[J].地球与环境,2015,43(2):138-151.
[25] Mc Dermott F, Matter D P, Hawke worth C. Centennial scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland[J]. Science, 2001,294:1328-1331.
[26] Fleitmann D. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman[J]. Science, 2003,300(5626):1737-1739.
[27] Spotl C, Fairchild I J, Tooth A F. Cave air control on dripwater geochemistry, obir caves(Austria): Implications for speleothem deposition in dynamically ventilated caves[J]. Geochimica Et Cosmochimica Acta, 2005,69(10):2451-2468.
[28] Shindoh T T, Mishima Y. Watanabe S, et al. Seasonal cave air ventilation controlling variation in cave air PCO2 and drip water geochemistry at Inazumi Cave, Oita, northeastern Kyushu, Japan[J]. Journal of Cave and Karst Studies, 2017,79(2):100-112.
[29] 刘再华, Chris GROVES,袁道先,等.水—岩—气相互作用引起的水化学动态变化研究:以桂林岩溶试验场为例[J].水文地质工程地质,2003(4):13-18.
[30] 张结,周忠发,汪炎林,等.短时间高强度旅游活动下洞穴CO2的变化特征及对滴水水文地球化学的响应[J].地理学报,2018,73(9):1687-1701.
[31] Sánchez-Cañete E P, Serrano-Ortiz P, Domingo F, et al. Cave ventilation is influenced by variations in the CO2-dependent virtual temperature[J]. International Journal of Speleology, 2013,42(1):1-8.
[32] 张蔷,赵淑艳,赵习方.北京石花洞内CO2的监测与评价[J].中国岩溶,1997(4):45-51.
[33] 宋林华,韦小宁,梁福源.河北临城白云洞洞穴旅游对洞穴CO2浓度及温度的影响[J].中国岩溶,2003(3):66-71.
[34] José Benavente, Vadillo I, Lian C, et al. Ventilation effects in a karstic show cave and in its vadose environment, Nerja, Southern Spain[J]. Carbonates & Evaporites, 2011,26(1):11-17.
[35] Deininger M, Fohlmeister J, Scholz D, et al. Isotope disequilibrium effects: The influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems: A model approach[J]. Geochimica Et Cosmochimica Acta, 2012,96:57-79.
[36] Haibo H E, Jing T, Shuhua L, et al. Spatial and temporal variation of environments and influencing factors in Loufang Cave, Northeast of Sichuan Province[J]. Tropical Geography, 2014,34(5):696-703..
[37] Smithson P A. Inter-relationships between cave and outside air temperatures[J]. Theoretical and Applied Climatology, 1991,44(1):65-73.
[38] Daniel O, Breecker, Ashley E, et al. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation[J]. Geochimica Et Cosmochimica Acta, 2012,96:230-246.
[39] Troester J W, White W B. Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere[J]. Water Resources Research, 1984,20(1):153-156.
[40] Kowalczk A J, Froelich P N. Cave air ventilation and CO2 outgassing by radon-222 modeling: How fast do caves breathe[J]. Earth & Planet Sci Lett, 2010,289:209-219.
[41] 陈琳,黄嘉仪,刘淑华,等.广东英德宝晶宫洞穴微环境时空变化特征及其主要影响因素探究[J].地球与环境,2017,45(2):164-170.
收稿日期:2020-01-06 修回日期:2020-02-26
资助项目:国家自然科学基金(41361081); 贵州师范大学资助博士科研项目(GZNUD[2017]6号)
第一作者:安丹(1994—),女,贵州遵义人,硕士研究生,研究方向为喀斯特地貌与洞穴研究。E-mail:andan4192@163.com
通信作者:周忠发(1969—),男,贵州遵义人,教授,博导,主要从事喀斯特资源环境、GIS与遥感研究。E-mail:fa6897@163.com