[1]樊佳奇,牛来春.云南干热河谷退化生态系统光合碳分配特征及其影响因素[J].水土保持研究,2020,27(02):62-68.
 FAN Jiaqi,NIU Laichun.Distribution Characteristics and Driving Factors of Assimilated C Pulse-Labeled With 13C of Degraded Ecosystem in Dry-Hot Valley of Yunnan Province[J].Research of Soil and Water Conservation,2020,27(02):62-68.
点击复制

云南干热河谷退化生态系统光合碳分配特征及其影响因素

参考文献/References:

[1] Lange M, Eisenhauer N, Sierra C A, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nature Communication, 2015,6.DOI:10.1038/ncomms7707.
[2] O'rourke S M, Angers D A, Holden N M, et al. Soil organic carbon across scales[J]. Global Change Biology, 2015,21(10):3561-3574.
[3] Han P, Zhang W, Wang G, et al. Changes in soil organic carbon in croplands subjected to fertilizer management: a global meta-analysis[J]. Scientific Reports, 2016,6.DOI:10.1038/srep27199.
[4] Fasbender L, Yáñez-Serrano A M, Kreuzwieser J, et al. Real-time carbon allocation into biogenic volatile organic compounds(BVOCs)and respiratory carbon dioxide(CO2)traced by PTR-TOF-MS, 13CO2 laser spectroscopy and 13C-pyruvate labelling[J]. Plos One, 2018,13(9).DOI:10.1371/journal.pone.0204398.
[5] Mooshammer M, Wanek W, Hämmerle I, et al. Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling[J]. Nature communications, 2014,5.DOI:10.1038/ncomms4694.
[6] Luo Y, Zang H, Yu Z, et al. Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance[J]. Soil Biology and Biochemistry, 2017,106:28-35.
[7] Vidal A, Remusat L, Watteau F, et al. Incorporation of 13C labelled shoot residues in Lumbricus terrestris casts:A combination of transmission electron microscopy and nanoscale secondary ion mass spectrometry[J]. Soil Biology and Biochemistry, 2016,93:8-16.
[8] Wang J, Chapman S J, Yao H. Incorporation of 13C-labelled rice rhizodeposition into soil microbial communities under different fertilizer applications[J]. Applied Soil Ecology, 2016,101:11-19.
[9] Vidal A, Quenea K, Alexis M, et al. Fate of 13C labelled root and shoot residues in soil and anecic earthworm casts: A mesocosm experiment[J]. Geoderma, 2017,285:9-18.
[10] Leinemann T, Preusser S, Mikutta R, et al. Multiple exchange processes on mineral surfaces control the transport of dissolved organic matter through soil profiles[J]. Soil Biology and Biochemistry, 2018,118:79-90.
[11] Cennerazzo J, De Junet A, Audinot J N, et al. Dynamics of PAHs and derived organic compounds in a soil-plant mesocosm spiked with 13C-phenanthrene[J]. Chemosphere, 2017,168:1619-1627.
[12] MäkeläA, Witte U, Archambault P. Short-term processing of ice algal-and phytoplankton-derived carbon by Arctic benthic communities revealed through isotope labelling experiments[J]. Marine Ecology Progress Series, 2018,600:21-39.
[13] Liu Z, Sun Y, Zhang Y, et al. Metagenomic and 13C tracing evidence for autotrophic atmospheric carbon absorption in a semiarid desert[J]. Soil Biology and Biochemistry, 2018,125:156-166.
[14] Koltai J, Mezei G, Zólyomi V, et al. Controlled isotope arrangement in 13C enriched carbon nanotubes[J]. the Journal of Physical Chemistry C,2016,120(51):29520-29524.
[15] Bird J A, Herman D J, Firestone M K. Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil[J]. Soil Biology and Biochemistry, 2011,43(4):718-725.
[16] Abadie C, Lothier J, Boex-Fontvieille E, et al. Direct assessment of the metabolic origin of carbon atoms in glutamate from illuminated leaves using 13C-NMR[J]. New Phytologist, 2017,216(4):1079-1089.
[17] Andresen L C, Domínguez M T, Reinsch S, et al. Isotopic methods for non-destructive assessment of carbon dynamics in shrublands under long-term climate change manipulation[J]. Methods in Ecology and Evolution, 2018,9(4):866-880.
[18] Ma Q, Wu L, Wang J, et al. Fertilizer regime changes the competitive uptake of organic nitrogen by wheat and soil microorganisms: An in-situ uptake test using 13C,15N labelling, and 13C-PLFA analysis[J]. Soil Biology and Biochemistry, 2018,125:319-327.
[19] Williams J S, Dungait J A J, Bol R, et al. Contrasting temperature responses of dissolved organic carbon and phenols leached from soils[J]. Plant and Soil, 2016,399(1/2):13-27.
[20] Soong J L, Dam M, Wall D H, et al. Below-ground biological responses to pyrogenic organic matter and litter inputs in grasslands[J]. Functional Ecology, 2017,31(1):260-269.
[21] Xing W, Li J, Li D, et al. Stable-isotope probing reveals the activity and function of autotrophic and heterotrophic denitrifiers in nitrate removal from organic-limited wastewater[J]. Environmental science & technology, 2018,52(14):7867-7875.
[22] Barré P, Quénéa K, Vidal A, et al. Microbial and plant-derived compounds both contribute to persistent soil organic carbon in temperate soils[J]. Biogeochemistry, 2018,140(1):81-92.
[23] Bai Z, Liang C, Bodé S, et al. Phospholipid 13C stable isotopic probing during decomposition of wheat residues[J]. Applied Soil Ecology, 2016,98:65-74.
[24] Tacon F L, Zeller B, Plain C, et al. Study of nitrogen and carbon transfer from soil organic matter to Tuber melanosporum mycorrhizas and ascocarps using 15N and 13C soil labelling and whole-genome oligoarrays[J]. Plant and Soil, 2015,395(1/2):351-373.
[25] Wang C, Xiao R, Cui Y, et al. Photosynthate-13C allocation in the plant-soil system after 13C-pulse labeling of Phragmites australis in different salt marshes[J]. Geoderma,2019,347:252-261.
[26] Li S, Gu X, Zhuang J, et al. Distribution and storage of crop residue carbon in aggregates and its contribution to organic carbon of soil with low fertility[J]. Soil and Tillage Research, 2016,155(S1):199-206.

备注/Memo

收稿日期:2019-05-29 修回日期:2019-06-10 资助项目:云南省教育厅科学研究基金项目“云南香丽高速公路高山高寒路域生态修复研究”(2018JS777) 第一作者:樊佳奇(1984—),男,贵州贞丰人,硕士,副教授,主要从事土地利用与生态恢复研究。E-mail:Jiaqi_fan@126.com 通信作者:牛来春(1981—),男,云南曲靖人,硕士,副教授,主要从事土地利用与生态恢复研究。E-mail:Chunlainiuu@163.com

更新日期/Last Update: 2020-02-25