某小区住宅楼素混凝土桩复合地基设计

吕红华1,董兆祥2,李树德1

(1. 北京大学环境学院, 北京 100871; 2. 河北地质学院, 石家庄 050031)

摘 要: 本工程选择 5 层细砂层为持力层,通过精心勘察、设计及计算, 承载力和沉降变形都满足设计要求, 为本地区此类工程的应用提供了一个比较成功和值得借鉴的实例。

关键词: 复合地基: 方案选择: 沉降变形

中图分类号: TU375.3 文献标识码: A

文章编号: 1005-3409(2003) 03-0045-03

The Design of Composite Foundations by Plain Concrete Piles of Some buildings in Some Community

LU Hong-hua¹, DONG Zhao-xiang², LI Shu-de¹

(1. College of Environmental Sciences, Peking University, Beijing 100871, China;

2. Hebei College of Geology, Shijiazhuang 050031, China)

Abstract: This engineering adopted the fifth stratum which is pressed to the uploading. Through the elaborate reconnaissance, design and calculation, the subsidence and deformation and loading met the design, which is a good example for the same engineering in the area.

Key words: composite foundations; scheme-choice; subsidence and deformation

1 工程概况

拟建住宅楼群(共四座)位于石家庄市中山西路北侧,石家庄陆军指挥学院生活区院内,场地原为汽车训练场。地面以上 13 层,高 39.0 m,一层地下室。设计基础类型为筏板基础,埋深 4.4 m,基底反力 300 kPa。上部结构类型设计为框架结构。安全等级为二级。

2 工程地质资料

建筑场地在地貌上属太行山山前冲积平原,地形平坦。场地除表层填土外,主要地层均为第四纪冲洪积成因的黏土、粉土和砂类土。根据其岩性和物理力学性质,在钻探所达36.0 m 深度范围内自上而下分为15个工程地质层。下面是与本工程关系较密切的8个土层的具体性状:

- 1 素填土: 层厚 $0.2 \sim 2.1 m$; 土质不均匀, 以粉土为主, 含零星小砖块。
- ④ 新近堆积黄土状粉土: 层厚 0.9~4.3 m; 土质不均, 顶部有炭屑及砖屑, 具大空隙, 局部夹粉质黏土薄层; 中压

缩。

- (四) 黄土状粉质黏土: 层厚 1.5~4.8 m; 土质不均匀, 具大空隙, 含大量锰质结构, 底部含小姜石, 见白色条纹; 可塑, 中压缩。
- (四-1 黄土状粉质黏土: 层厚 5.3 m; 土质不均匀, 含水量大; 软缩, 中-高压缩。
- ¼ 黄土状粉土: 层厚 0.9~7.2 m; 土质不均匀, 顶部含小姜石, 局部夹黄土状粉质黏土薄层, 见白色条纹: 中压缩。
- ½ 细砂: 层厚 1.6~7.0 m; 砂质较纯, 分选性较差, 局部 混有中粗砂透镜体, 成分主要为石英和长石。
- % 粉土: 层厚 0. 5~3.85 $_{
 m m}$; 土质不均, 夹多层粉质黏土 薄层, 见少量姜石及氧化物, 为粉土和粉质黏土互层; 中压缩
- ⑧ 中砂: 层厚 $0.4 \sim 2.7 \text{ m}$; 砂质较纯, 分选性较差, 主要为石英和长石, 少量暗色矿物。
- (七) 粉土: 层厚 $0.5 \sim 3.7 \text{m}$; 土质不均匀, 局部夹薄层粉质黏土, 少量姜石和云母; 中压缩。基础下各土层(④- ⑧层)的物理力学性质见表 1。

山 收稿日期: 2003-0425

表 1 基础下土层的物理力学性质

地层编号	岩性	密实度	层厚/ m	f k 标准值/kPa	压缩模量	重度
4	黄土状粉土	_	0.9~4.3	100	-	15. 9
(四)	黄土状粉质黏土	_	1.5 ~ 4.8	140	10. 26	18.3
四- 1	黄土状粉质黏土	_	5. 3	90	4. 57	19. 3
1/4	黄土状粉土	稍密	0.9 ~ 7.2	150	11.71	17. 2
1/2	细砂	中密	1.6~7.0	160	18	-
3/4	粉土	稍密- 中密	0.5 ~ 3.85	170	8. 97	19. 8
8	中砂	中密	0.4 ~ 2.7	260	27	_

3 黄土状土的湿陷性评价

根据黄土湿陷试验结果, 9#、18# 探井自重湿陷系数均小于 0.015, 27# 探井自重湿陷量为 0.78 cm。依据 湿陷性黄土地区建筑规范》(GBJ25-90)第 2.3.2条判定该场地为非自重湿陷性场地。自基础底部算起, 9# 探井总湿陷量为 2.1 cm, 18#、27# 探井湿陷系数均小于 0.015, 依据 湿陷性黄土地区建筑规范》(GBJ25-90)第 2.3.7条判定地基湿陷等级为一级。据勘察 35.0 m 内未见地下水,从而设计时不考虑地下水对地基土的影响。

4 地基处理方案选择

4.1 天然地基筏形基础

该住宅楼群基底压力设计值 300 kPa。

筏形基础埋深 4.4 m。从工程地质剖面图上可以看出,基础底面位于新近堆积黄土状粉土④层、黄土状粉质黏土岬层、岬-1层和黄土状粉土¼层之上。地层变化较大。根据 湿陷性黄土地区建筑规范》(GBJ25-90)第3.6.3条,第④、岬、岬-1、½层承载力设计值分别为:159 kPa,210 kPa,161 kPa,220 kPa。依据 建筑地基基础设计规范》(GBJ7-89)第5.1.1条,各层均不满足要求,因此采用天然地基筏形基础方案不可行。

4.2 复合地基筏形基础

由上知不宜采用天然地基的原因是由于持力层强度不

够。根据经验选用 D = 400 mm 低强度混凝土桩处理上述 (3)、(3) 层地基土。桩端持力½ 层选用层细砂。

桩的有关设计参数见表 2。

表 2 复合地基桩设计参数

地层编号	地层名称	侧阻力标准值 q _{sk} /kPa	端阻力标准值 <i>q_{pk} /</i> kPa
4	粉土	14	-
(四)	粉质黏土	20	-
四-1	粉质黏土	14	-
1/4	粉土	22	_
1/2	细砂	25	400

单桩承载力标准值估算依据 建筑地基基础设计规范》 (GBJ7-89)第8.6.3条提供公式

$$R_{kl} = U_p q_{si} l_i + q_p A_p \tag{1}$$

计算,结果见表 3。

表 3 复合地基单桩承载力标准值估算结果

楼号	有效桩长 / m	桩端持力层	计算用钻孔号	单桩承载力标准值 /kN
1#	5. 95	½ 层细砂	33#	239. 4
2#	4. 55	½ 层细砂	20#	197. 9
3#	6.05	½ 层细砂	16#	186. 0
3#	5.75	½ 层细砂	11#	223. 4
4#	5.45	½ 层细砂	7#	227. 2

可见,复合地基处理后,各层承载力大为提高。 下卧层强度验算见表 4。

表 4 下卧层强度验算结果

楼号	土层名称及编号	层顶埋深/m	Pcz/kPa	Pz/kPa	$P = Pcz + Pz /_{kPa}$	Fz / kPa 规范 GBJ7- 89 第 5. 1. 3 条
1#	细砂½	8. 30	157.7	198. 5	356. 2	604
	粉土¾	14. 5	275. 5	127. 1	402. 6	462
2#	细砂½	8. 1	153. 9	201.0	354. 7	593
	粉土¾	14. 3	271.7	129. 0	400. 7	458
3#	细砂½	8. 25	156. 8	199. 2	355. 9	601
	粉土¾	14. 3	271.7	129. 0	400. 7	458
4#	细砂½	8. 3	157.7	198. 6	356. 3	604
	粉土¾	14.6	262. 2	133. 7	395. 9	464

由上表可知,下卧层强度满足规范 GBJ7-89第5.1.6条 Pz + Pcz < fz 的要求,因此采用复合地基筏形基础方案是可行的。而且,此方案易于施工,节省开支。

5 复合地基处理设计方案

5.1 换土垫层

3#、4# 槽东侧原为鱼塘,需换土处理。素土回填按下图

进行。

5.2 桩数、桩的取值与桩的布置 具体见下表。

其中单桩承载力计算按公式计算:

$$R_{k1} = U_p q_{si} l_i + q_p A_p \tag{2}$$

$$R_{k2} = \frac{1}{3} f_{cs} \, _{k} A \tag{3}$$

式中: R_{kl} 、 R_{k2} ——单桩的竖向承载力标准值, kN; q_p ——桩端的承载力标准值, kPa; A_p ——桩身的横截面积; U_p ——桩身的周边长度, m; q_{si} ——桩周土的摩擦力标准值, kPa; l_i ——按土层划分的各段桩长, m; f_{csk} ——设计桩身强度, kPa。

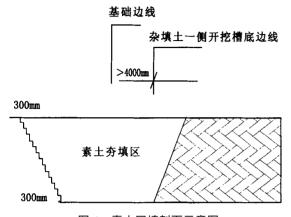


图 1 素土回填剖面示意图

说明: (1) 原状土一侧 按 45 放坡, 夯填时 分层厚度 为 300 mm, 与原状土接触部位设计高度均为 300 mm 台阶:

(2)杂填土一侧基础边线外扩 4 m 以上进行大放坡, 放坡要求 夯填过程中边坡杂填土不掉落、坍塌, 夯填时与杂填土接触部 位不设台阶。

表 5 各楼座桩设计情况一览表

桩径	有效桩长 /mm	桩中心距	布桩形式	置换率	R_k	
1# 楼	400	7. 5	. 27 × 1. 23m	矩形	m = 9.0%	240k N
2# 楼	400	7.5	1. 13 x 1. 23m	矩形	m = 9.0%	240k N
3# 楼	400	8.5	1. $13 \times 1.23_{\rm m}$	矩形	m = 9.0%	245 _k N
4# 楼	400	8.5 1	. 27 × 1. 23m	矩形	m = 8.0%	270k N

而复合地基承载力则按下式进行:

$$f_{spk} = m \frac{R_k}{A_p} + \alpha \beta (1 - m) f_k \tag{4}$$

式中: f_{spk} —— 复合地基承载力标准值; m —— 面积置换率; R_k —— 单桩承载力标准值; A_p —— 桩的截面尺寸; α —— 桩间土强度提高系数, 1.0; β —— 桩间土强度发挥度, 0.9; f_k —— 天然地基承载力标准值;

经计算, 复合地基承载力均满足> 250 kPa 的要求。

5.3 地基土下卧层验算 (计算过程以 4# 楼为例)

素砼桩加固区下卧层为第%层粉土,其承载力标准值 $f_k = 170 \text{ kPa}$,根据 建筑地基基础设计规范》(GBJ7-89)有

关规定,对该层进行下卧层验算如下:

$$P_z + P_{cz} f_z (5)$$

式中: P_z ——下卧层顶面处附加压力设计值, kPa; P_z ——下卧层顶面处土的自重压力标准值, kPa; fz —— 下卧层顶面处经深度修正后的地基承载力设计值, kPa

¹ 下卧层顶面处附加压力设计值 P₂

$$P_z = \frac{lb(P - P_c)}{(b + 2z \operatorname{tg}\theta) (l + 2z \operatorname{tg}\theta)} ($$
按矩形基础计算) (6)

式中: l ——基础长度, 89. 31 m; b ——基础宽度, 14. 16 m; $(P - P_c)$ ——基底附加应力平均值与土的自重压力之差, kPa; θ —地基压力扩散角, 20 °, z ——基础底面至软弱下卧层顶面处的厚度, 7.5 m。

将各值代入上式可得:

$$P_z = \frac{89.32 \times 14.16 \times (250-4.4 \times 18.0)}{(14.16+2 \times 7.5 \times 0.364)(89.31+2 \times 7.5 \times 0.364)}$$
$$= 116.17 \text{ kPa}$$

④下卧层顶面处土的自重压力标准值 Pcz

$$P_{cz} = Y_d Z \tag{7}$$

式中: Y_d —— 下卧层顶面以上土体重度, 18.0 kN/m^3 ; z —— 下卧层顶面厚度, 14.0 m 将各值代入上式得: P_{cz} = 252.0 kPa

四下卧层顶面处经深度修正后的地基承载力设计值f_z

$$f_z = f_k + \eta_b Y(b-3) + \eta_b Y_0(d-0.5)$$
 (8)

式中: f_k —— 下卧层地基承载力标准值, 170 kPa; $Y_s Y_0$ —— 基底以下土的重度及基底以上土的加权平均重度; Y_0 取18. 0 kN/ m³; η_k η_d —— 基础宽度及深度修正系数, 按规范查表分别取: $\eta_b = 0$, $\eta_d = 2.0$; b, d —— 基础 宽度及深度, d = 14.0 …

将各值代入上式计算得: $f_z = 636 \text{ kPa}$

¼ 计算结果

$$P_z + P_{cz} = 368.17 \text{ kPa} < f_z = 636 \text{ kPa}$$

即下卧层强度满足设计要求。

6 结 论

由以上计算分析可知,在本工程地质条件下,按此方案设计是完全可以满足承载力、沉降变形条件的。

本设计的完成主要依据了建筑地基基础(GBJ7-89)、高层建筑箱形与筏形基础技术规范(JGJ6-99)、建筑地基处理技术规范(JGJ79-91)、建筑桩基技术规范(JGJ94-94)等规范。

参考文献:

- [1] 石家庄市勘察测绘设计研究院. 石家庄陆军指挥学院住宅小区岩土工程勘察报告[R]. 2002. 1.4.
- [2] 北方设计研究院.基础平面图[Z]. 2002.2.
- 3] 陈希哲. 土力学地基基础工程(第三版)[M]. 北京: 清华大学出版社, 1998.
- [4] 林宗元. 岩土工程治理手册[5]. 沈阳: 辽宁科学技术出版社, 1993.