黄土高原旱地磷肥残效及利用率研究

王生录

(甘肃省农业科学院旱地农业研究所,甘肃 兰州 730070)

摘 要: 连续 4 年的冬小麦定位试验证明, 旱地施磷 $(P_{\bullet}O_5)$ 量在 75~ 300 k_g/m^2 时, 小麦的增产率基本随磷肥用量的增加而提高, 但 $P_{\bullet}O_5$ 的增产作用和磷肥利用率却随磷肥用量的增加而降低: 磷肥不仅当季增产显著, 而且后效明显, 第 1 季施磷后在第 4 季 $P_{\bullet}O_5$ 施用量 75 k_g/m^2 的增产率为 53 9%, 施用量 150 k_g/m^2 的增产率为 64 3%, 施用量 300 k_g/m^2 的增产率为 109 6%, 1 k_g $P_{\bullet}O_5$ 累计增产小麦依次为 38 7, 25 5, 15 1 k_g , 分别为第 1 次效果的 2 26 倍、2 38 倍和 2 85 倍。 磷肥的利用率随用量增加而降低,当季利用率低,累计利用率高,施 $P_{\bullet}O_5$ 75~ 300 k_g/m^2 时,当季利用率为 12 0%~ 4 3%,累计利用率达 25 0%~ 12 4%。

关键词: 磷肥: 分配方式: 残效: 利用率

中图分类号: S143 2 文献标识码: A 文章编号: 1005-3409(2003)01-0071-05

Study on Residual Effect of Phosphorus Fertilizer and Use Efficiency in Dryland of Loess Plateau

WANG Sheng-lu

(Dryland Agriculture Institute of, Gansu Acadeny of Agro-sciences, Lanzhou 730070, Gansu, China)

Abstract: Long-term oriented experiment shows that if applying P (P Ω 5) is 75~ 300 kg/hm² in dryland through planting w inter w heat for 4 years, increasing ration is enhanced with use dose, but increase function of P Ω 5 and use ratio of P fertilizer fall with add of application. Not only increases Phosphorus fertilizer the yield of temporal season but also later efficiency is evident. Increase production ration of applying P 75 kg/hm², 150 kg/hm², and 300 kg/hm² in fourth season is respectively 53 9%, 64 3%, and 109 6% after applying P in the first season, so increase yield of 1 kg P Ω 5 is respectively 38 7 kg, 25 5 kg, and 15 1 kg, which are 2 26, 2 38 and 2 85 times of first applying P. U se ration of P fertilizer is low in that season, but accumulation use ration is high, such as use ration is 12 0% ~ 4 3% in that season and accumulation use ration 25 0% ~ 12 4% with P 75~ 300 kg/hm².

Key words: Phosphorus fertilizer; distribution manners; residual efficiency; use ration

大多数研究表明,磷肥肥效缓,持续时间长,但如何确定 其肥效大小和分配方式,国内的研究并不多,旱地尤其缺乏 这方面的系统资料。甘肃农科院在陇东旱塬连续进行4年的 冬小麦磷肥不同用量及分配方式的田间定位试验,系统研究 了旱地施用磷肥的当季肥效、残效、当季利用率和累计利用 率,为合理施用磷肥及提高磷肥利用率提供了科学依据。

1 材料与方法

试验在甘肃省镇原县上肖乡实施。试验地土壤为覆盖黑 垆土, 耕性好, 蓄水保墒能力较强, 但土壤养分含量较低, 试验播种前 0~20 cm 土地耕层养分状况测定结果如表 1。

试验 4 年内 P₂O₅ 的总用量分别为 0,75,150,225,300,

^{*} 收稿日期: 2002-11-25

表 1 供试土壤耕层养分状况

处 有机质/	全氮/	全磷/	速效氮/	速效磷/	速效钾/
理 $(g \cdot kg^{-1})$	(g · kg ⁻¹)	$(g \cdot /kg^{-1})$	$(mg \cdot kg^{-1})$	$(mg \cdot kg^{-1})$	(m g · kg ⁻¹)
11. 70	0 76	0 68	61. 0	11. 5	158 0
11. 85	0 73	0 69	52 5	10 5	158 0
11. 30	0 74	0 69	61. 0	11. 0	163. 0
12 30	0 74	0 69	55. 5	10.0	153. 0

	kg/hm²				
编号	第1季	第2季	第3季	第4季	合计
1	0	0		0	0
2	0	75	0	0	75
3	0	150	0	0	150
4	0	300	0	0	300
5	75	0	0	0	75
6	75	75	150	0	300
7	75	150	0	0	225
8	75	300	0	0	375
9	150	0	0	0	150
10	150	75	0	0	225
11	150	150	0	0	300
12	150	300	0	0	450
13	300	0	0	0	300
14	300	75	0	0	375
15	300	150	0	0	450
16	200	200	0	0	600

2 结果与讨论

2 1 磷肥当季的增产效果

试验结果表明,在旱塬土壤条件下,不同用量磷肥均有 明显增产效果(表 3)。第1季施P₂O₅为75,150,300 kg/hm² 的处理, 小麦当季分别增产34 3%、44 7%、44 0%, 1 kg P₂O₅ 分别增产小麦16 4, 10 7, 5 3 kg。如果第1季不施, 由 于经历了1年的消耗,第2季所施磷肥的相对效果较高,3 个用量的增产率依次达到 62 2%、79.6%、82 9%。虽然第 2 季干旱严重, 小麦普遍减产, 但 1 kgP2O 5 的增产效果仍不低 于产量水平高的第1季。产量结果还看出,第1季施用磷肥 之后, 第2季继续施用磷肥的效果则明显降低, 例如在第1 季 3 个用量的基础上, 第 2 季继续施入相应量的磷肥时, 增 产率分别为 4 5% ~ 25 3%、9 0% ~ 23 5%、8 3% ~ 12 0%, 1 kg P2O5 增产小麦分别只有 1. 2~ 4. 8 kg, 0. 9~ 4.9 kg, 0.8~3.4 kg。可见, 随着第1季施磷量的增加, 第2 季施入磷肥的增产效果随着用量的增加而肥效明显降低,同 时施磷量过高,导致养分供应比例失调,最终使肥效降低。说 明在农业生产实践中合理施用磷肥对提高磷肥经济效益有 重要意义。

2 2 磷肥不同用量及分配方式的残效

磷肥施入土壤后,第1季作物常常只能吸收利用一小部分,其余的大部分仍残留在土壤中。表4结果表明,这部分残留磷对后作仍有明显的增产效果,表现出一定的残效。 试验第1季施 $P_{2}O_{5}75$, 150, $300 kg/hm^{2}$ 的处理, 3 年残效分别累计增产小麦 1 671. 0, 2 214. 0, 2 902. 5 kg/hm^{2} , 分别是施磷

当季肥效的 1. 36 倍、1. 38 倍、1. 84 倍、1 kgP₂O₅ 的增产量依 次为 22 3, 14 8, 9 8 kg; 3 个用量的磷肥施于第 2 季时, 2 年 残效累计增产 783 0~ 2 149. 5 kg/hm², 是当季肥效的 63% ~ 130%, 1 kg P2O 5 增产小麦 10 4~ 7.1 kg, 同量磷肥分配 方式不同时, 其总效果显著不同, 例如在第 1 季施 P₂O₅75, 150,300 kg/hm² 的基础上,第 2 季继续加相同用量的磷肥, 即总用量增至 225, 375, 450, 600 kg/hm² 时, 不管施肥年份 如何分配, 残效的增产幅度都比一次性施磷的低, 个别处理 出现了不增产的情况。进一步分析还可看出,一次性施 P₂O₅75~ 300 kg/hm²,往后几年产量仍大于对照区,表明一 次性施 P₂O₅75, 150, 300 kg/hm² 至少保持在 3 季冬小麦上 有后效; 一次性施 P₂O₅300 kg/hm² 往后几年产量均大 150 kg/hm^2 和 75 kg/hm^2 处理的产量, 说明磷肥用量越大. 后效 也越大。这里需要说明的是,由于对照长期不施磷,作物产量 从第 1 季的 3 592 5 kg/hm² 下降至第 4 季的 706 5 kg/hm² (表 3), 由此而使施磷处理残效的增产效果十分显著, 其增 产率也远比施磷当年的高(如 75 kg/hm² 残效增产率为 41. 8% ~ 53 9%, 150 kg/hm² 为 56 8% ~ 64 0%, 300 kg/ hm² 为 48 2%~ 109.6%); 但从绝对产量来看, 残效产量则 在逐个下降, 一次性施 $P_{2}O_{5}75\sim 300 \text{ kg/hm}^{2}$, 当季产量为 4 824 0~ 5 173 5 kg/hm², 残效产量分别为2 826 0~ 1 087. 5 kg/hm²、2 953 5~ 1 480 5 kg/hm²。由此看出, 尽管 磷肥有较长的肥效,但随年限的延长残效则逐年下降。因此, 在农业生产实践中,对磷肥的施用既要考虑它的增产效果, 也要考虑磷肥在前作中的残效,只有这样才能科学合理地施 用磷肥, 使之发挥最大经济效益。

2 3 磷肥不同用量及分配方式的利用率

从表 5 冬小麦不同处理吸磷量及磷肥利用率的结果可 以看出,单位面积作物吸收的磷量基本随施磷量的增加而增 加,只是在干旱少雨年份(1994~1996年),由于小麦受旱严 重, 吸磷量明显低于丰雨年份(1992~1993年), 磷肥利用率 的变化趋势恰好相反,而且施磷越多,利用率越低,当季利用 率低, 累计利用率高, 一次施 P₂O₅75, 150, 300 kg/hm² 的处 理, 经种植 4 季小麦之后, 累计利用率分别为25 0%、 14 3%、12 4%, 分别是当季利用率的 2 1 倍、2 3 倍和 2 9 倍, 而第1季不施磷, 第2季施同量磷肥的处理, 累计利用率 也分别达到施磷当季的 1.6 倍 1.5 倍和 2.4 倍。同量磷肥 在不同分配条件下,对磷肥利用率的影响较大,凡是第1季 施磷量较低的, 利用率均高; 第1季用量较高的, 利用率则均 低, 如以总量 225, 375, 450 kg/hm² 为例, 第 1 季施 75 kg/ hm², 第2季施150 kg/hm², 累计利用率为15.7%, 反之为 11. 7%, 第1季施75 kg/hm², 第2季施300 kg/hm², 利用率 为 16 0%, 反之为 5 9%, 第 1 季施 150 kg/hm², 第 2 季施 300 kg/hm², 利用率为 9.7%, 反之则为 5.4%。 进一步比较 还可看出, 当磷肥用量从 225 kg/hm² 增至 600 kg/hm² 时, 年度间磷肥残效利用率都很低, 部分处理的利用率甚至为 零,这与前述残效产量结果相一致。因此,要提高磷肥利用率 必须掌据适宜用量,并充分利用它的后效作用。

2 4 磷肥对冬小麦根系生长的影响

盆栽试验证明,磷肥对小麦根系的生长发育有着十分明显的促进作用。表 6 结果看出,施 P+O s75, 150, 300 kg /hm²处理拔节期每盆的根重平均为1. 80, 11. 12, 12 64 g,分别比无磷处理增加 86 0%、111. 0%、139 8%。成熟期每盆的根重平均为9 62, 10 92, 14 32 g,分别比无磷处理增加48 0%、68 0%、120 3%。由于根系是作物从土壤中吸收水分及养分的重要器官,根系增加反映出根的吸收面积增大、对水分及养分的吸收能力也必然会增强,这对旱地作物的生长发育有着重要的意义。

2 5 磷肥对冬小麦水分利用效率的影响

磷肥促进根系生长发育的作用不仅有利于作物对养分的吸收利用,而且有利于对水分的吸收利用。试验结果(表7)表明,不同用量的磷肥,不管施肥条件如何变化,对麦田耗

水量的影响不大,但对水分利用效率则有显著影响,无论当季肥效,还是残效,水分利用效率均随磷肥用量的增加而提高。一次性施 $P_{*}O_{5}$ 量为 75, 150, 300 kg/hm², 水分利用效率为 6 68~8 13 kg/(mm·hm²),平均为 7. 20 kg/(mm·hm²),比不施磷处理水分利用效率提高 37. 7%。磷肥分配方式不同,当施磷总量达到 225~600 kg/hm²时,水分利用效率为 7. 4~7.8 kg/(mm·hm²),平均为 7. 62 kg/(mm·hm²),比不施磷处理水分利用效率提高 45. 7%。由此说明,旱地施用磷肥具有以肥促根、以根调水的积极作用。 黄土旱塬土层深厚,深层贮水稳定,增施磷肥有利于对深层水分的利用,增强作物抗旱能力,是提高水分利用效率的重要措施之一。

表 3	磷肥不同用量及分配方式对冬小麦产量的影响	ı
123		J

	77.0													
	第1季			第2季			第3季			第4季			合计	
用量/(kg · hm ⁻²)	产量/(kg · hm ⁻²)	增产 /%	用量/(kg · hm ⁻²)	产量/(kg · hm ⁻²)	增产 /%	用量/(kg · hm ⁻²)	产量/(kg · hm ⁻²)	增产 /%	用量/(kg · hm ⁻²)	产量/(kg · hm ⁻²)	增产 /%	用量/(kg · hm ⁻²)	产量/(kg · hm ⁻²)	增产 /%
0	3592 5		0	1993. 5	/	0	1182 0	/	0	706 5	/	0	7474. 5	
			75	3234 0	62 2	0	1624 5	37. 3	0	1047. 0	48 2	75	9498 0	27. 1
			150	3580 5	79. 6	0	1500 0	26 9	0	1401. 0	98 3	150	10074 0	34. 8
			300	3646 5	87. 9	0	2484 0	110 2	0	1554. 0	120 0	300	11277. 0	50.9
75	4824. 0	34. 3	0	2826 0	/	0	1639. 5	/	0	1087. 5	/	75	10377. 0	38 8
			75	2953. 5	4. 5	150	2604 0	58 8	0	1360 5	25. 1	300	11742 0	57. 1
			150	3540 0	25. 3	0	2062 5	25. 8	0	1327. 5	22 1	225	11754 0	57. 3
			300	3193. 5	13 0	0	2289. 0	39. 6	0	1327. 5	22 1	375	11634 0	55. 6
150	5197. 5	44. 7	0	3120 0	/	0	1809. 0	/	0	1161. 0	/	150	10888 5	51. 1
			75	3207. 0	2 7	0	2382 0	31. 7	0	1327. 5	14. 3	225	12114 0	62 1
			150	3859. 5	23. 5	0	2235. 0	23. 5	0	1447. 5	24. 7	300	12739. 5	70 4
			300	3406 5	9. 0	0	2463 0	36 2	0	1300 5	12 0	450	12367. 5	65. 5
300	5173. 5	44 0	0	2953. 5	/	0	2350 5	/	0	1480 5	/	300	11958 0	60 0
			75	3207. 0	8 6	0	2356 5	0.3	0	1267. 5	-14 4	375	12004 5	60 6
			150	3306 0	12 0	0	2230 5	-5 . 1	0	1540 5	4. 1	450	12250 5	63. 9
			300	3199. 5	8 3	0	2316 0	-1. 5	0	1576 5	6 5	600	12265 5	64. 1

表 4 磷肥不同用量及不同分配方式的残效

处 理/ -	第1季		第 2	季	第	3 季	第 4	第4季		+
(D.O.1.a. 1	增产/ 11 (kg·hm ⁻²)	kgP2O5增? kg	空/增产/1kg (kg·hm ⁻²)		·/ 增产 (kg/hm ⁻²)		宇 增产/ 1k (kg·hm ⁻²)	_	产/增产/1k (kg·hm ⁻²)	
				kg	<u> </u>			kg		kg
P ₇₅ - P ₀ - P ₀ - P ₀	1231. 5	16.4	832 5	11. 1	457. 5	6 1	381. 0	5. 1	1671. 0	22 3
P_{150} - P_{0} - P_{0} - P_{0}	1606 5	10.7	1132 5	7. 6	627. 0	4. 2	454. 5	3. 0	2214 0	14. 8
P ₃₀₀ - P ₀ - P ₀ - P ₀	1581. 0	5. 3	960. 0	3. 2	1168 5	4. 0	774. 0	2 6	2902 5	9. 8
Po- P75 Po- Po			1240 5	16 5	442 5	5. 9	340 5	4. 5	783 0	10. 4
Po- P150- Po- Po			1587. 0	10 6	318 0	2 1	694. 5	4. 6	1012 5	6.7
Po- P300- Po- Po			1653 0	5. 5	1302 0	4. 3	847. 5	2 8	2149. 5	7. 1
P75- P150- P0- P0	1231. 5	16.4	714. 0	4. 8	432 0	1. 9	240 0	1. 1	663 0	3.0
P ₁₅₀ - P ₇₅ - P ₀ - P ₀	1606 5	10.7	381. 0	5. 1	573. 0	2 5	621. 0	2 8	1191. 0	5. 3
P75- P300- P0- P0	1231. 5	16.4	367. 5	1. 2	649. 5	1. 7	240 0	0.6	889. 5	2 3
P300- P75- P0- P0	1581. 0	5. 3	253. 5	3. 4	6 0	0	0	0	6 0	0
P150- P300- P0- P0	1606 5	10.7	280 5	0.9	654. 0	1. 5	139. 5	0.3	793 5	1. 8
P ₃₀₀ - P ₁₅₀ - P ₀ - P ₀	1581. 0	5. 3	352 5	2 4		0	60 0	0.1	60 0	0.1
P ₃₀₀ - P ₃₀₀ - P ₀ - P ₀	1581. 0	5. 3	246 0	0.8	0	0	96 0	0. 2	96 0	0 2

合计数不包括施磷当季的结果。

表 5 磷肥不同用量及不同分配方式的利用率

处 理 -	第 1	季	第 2	季	第3	季	第 4	季	合	<u>计</u>
(P ₂ O ₅ kg/hm ⁻²)	吸磷量/ (kg/hm ⁻²)	利用率/ %	吸磷量/ (kg·hm ⁻²)	利用率/ %	吸磷量/ (kg·hm ⁻²)	利用率/ %	吸磷量/ (kg·hm ⁻²)	利用率/ %	增产/ (kg·hm ⁻²)	P ₂ O ₅ 增产/ kg
P75- P0- P0- P0	33. 0	12 0	18 90	4. 4	10 65	5. 0	9. 45	3. 6	72 0	25. 0
P150- P0- P0- P0	33 6	6 2	19. 90	5. 3	10.05	1. 5	8 70	1. 3	73. 5	14. 3
P ₃₀₀ - P ₀ - P ₀ - P ₀	37. 1	4. 3	23. 25	3. 7	16 50	2 9	11. 4	1. 5	88 5	12 4
Po- P75 Po- P0	24. 2		18 00	9. 6	10. 35	3 4	8 40	2 2	61. 5	15. 2
Po- P150- Po- Po	24. 2		22 95	8.1	10. 95	2 1	9. 60	1. 9	67. 5	12 1
Po- P300- Po- Po	24. 2		21. 45	3. 6	16 50	2 9	12 45	1. 9	75. 0	8 4
P75- P150- P0- P0	33. 0	12 0	18 90	3. 1	12 60	0.5	9. 75	0.1	75. 0	15. 7
P150- P75- P0- P0	33. 6	6 2	20 85	2 8	14. 10	1. 8	10.80	0.9	79. 5	11. 7
P75- P300- P0- P0	33. 0	12 0	23. 25	3. 0	14. 70	0.8	10. 35	0.2	81. 0	16 0
P ₃₀₀ - P ₇₅ - P ₀ - P ₀	37. 1	4. 3	22 95	1. 6	15. 15	0	10. 05	0	85. 5	5. 9
P ₁₅₀ - P ₃₀₀ - P ₀ - P ₀	33. 6	6 2	24. 45	1. 9	15. 30	1. 2	10. 35	0.4	84. 0	9. 7
P ₃₀₀ - P ₁₅₀ - P ₀ - P ₀	37. 1	4. 3	23. 40	1. 1	14. 70	0	11. 40	0	87. 0	5. 4
P300- P300- P0- P0	37. 1	4. 3	23. 70	0. 7	14. 10	0	13. 35	0.3	88 5	5. 3

表 6 磷肥对冬小麦根系生长的影响

P ₂ O ₅ 用量/		拔节期/(g·盆-1)					成熟期/(g·盆 ⁻¹)				
(kg · hm ⁻²)	I	II	III	x	%	I	II	III	x	%	
0	5. 91	4 59	5. 32	5. 27	100 0	8 12	6 10	5. 27	6 50	100 0	
75	10 18	9. 93	9. 29	9. 80	186 0	11. 20	10 82	6 85	9. 62	148 0	
150	12 59	10 34	10 42	11. 12	211. 0	13 00	11. 65	8 11	10 92	168 0	
300	11. 68	15. 93	12 64	12 64	239. 8	11. 58	16 08	15. 29	14. 32	220 3	

表 7 磷肥对冬小麦水分利用率的影响

水分利用率: kg/(mm · hm ⁻²)

			21 21 22 23 33 13 13 13 13						3 73 13713 1 11g/ (IIIII)		
 处理 -	第1季		第 2	. 季	第3	季	第4季		平	均	
(P ₂ O ₅ kg/hm ²)	耗水量/ mm	水分利 用效率	耗水量/ mm	水分利 用效率	耗水量/ mm	水分利 用效率	耗水量/ mm	水分利 用效率	耗水量/ mm	水分利 用效率	
P ₇₅ - P ₀ - P ₀ - P ₀	521. 6	9. 3	413. 7	6.9	279. 0	6 0	247. 5	4. 5	365. 5	6 68	
P_{150} - P_{0} - P_{0} - P_{0}	531. 9	9. 8	443 5	7. 1	257. 4	6 0	285. 0	4. 1	379. 5	6 75	
P300- P0- P0- P0	526 0	9. 9	407. 9	7. 2	256 8	9. 8	267. 2	5. 6	364. 5	8 13	
Po- P75 Po- Po	483 6	7. 5	405. 8	8 0	241. 4	6.8	277. 4	3. 8	352 1	6 53	
Po- P150- Po- Po	483 6	7. 5	435. 6	8.3	261. 2	6 9	286 5	5. 0	361. 7	6 93	
Po- P300- Po- P0	483 6	7. 5	424. 7	8 6	290 4	8 1	288 3	5. 4	334. 8	7. 40	
P ₇₅ - P ₁₅₀ - P ₀ - P ₀	521. 6	9. 3	432 0	8.3	287. 9	7. 2	273. 2	4. 8	378 2	7. 40	
P75- P300- P0- P0	521. 6	9. 3	393 2	8.1	290 6	8 0	293. 2	4. 5	374. 8	7. 48	
P ₁₅₀ - P ₃₀₀ - P ₀ - P ₀	531. 6	9. 8	416 3	8.3	286 5	8 6	286 5	4. 5	380 3	7. 80	
P ₃₀₀ - P ₃₀₀ - P ₀ - P ₀	526 0	9. 9	380. 9	8.4	318 8	7. 2	285. 5	5. 6	377. 8	7. 80	
P ₀ - P ₀ - P ₀ - P ₀	483 6	7. 5	386 5	5. 1	220 0	5. 4	252 1	2 9	335. 6	5. 23	

2 6 土壤速效磷含量变化

表 8 是不同用量的磷肥施入土壤后耕层速效磷 (P) 含量变化情况。试验 1992 年播前因无施磷干扰,土壤速效磷都很接近,为 $10^{\sim}~15\,\mathrm{mg/kg}$,按不同用量施用磷肥并种植 4 季小麦之后,P $_2O_5$ 零处理只有消耗而无补充,故速效磷含量下降为 4 2 mg/kg,比原有水平降低了 7. 3 mg/kg,P $_2O_5$ 75 kg/hm² 和 P $_2O_5$ 75 kg/hm² 处理也分别比原有水平下降低了 5. 1 mg/kg 和 4 0 mg/kg,只有 P $_2O_5$ 300 kg/hm² 处理

表 8 耕作层土壤速效磷含量变化

P2O 5 总用量/-		速效磷含量/(mg·kg ⁻¹)									
(kg·hm ⁻²)	基础 水平	第 1 季 收后	第 2 季 收后	第3季 收后	第 4 季 收后						
0	11. 5	8 0	7. 0	6 0	4. 2						
75	10.5	10 0	8 0	7. 0	5. 4						
150	11. 0	14. 0	10 0	8 0	7. 0						
300	10 0	18 0	13.0	10.0	11. 0						
375				12 5	14. 5						
450				12 5	16.5						
600				21. 5	20.0						

经 4 季作物吸收利用后仍然保持原有水平, 但施磷量增加到 375, 450, 600 kg/hm² 时, 速效磷含量依次为 14 5, 16 5, 20 0 mg/kg, 远远高于基础土壤含磷水平, 说明增施磷肥对提高土壤速效磷具有重要作用。 结合 4 年试验产量, 在本试验年份的降水条件下, 施 $P_{2}O_{5}300$ kg/hm² 可基本满足 4 季 冬小麦的需要。

3 小 结

(1) 旱地土壤施用磷肥, 能提高土壤有效磷含量, 一次性施 $P2O_575$, 150, $300~kg/hm^2$ 至少保持 4 季作物有残效, 并且 **参考文献**:

用量增加, 残效相应提高, 但从绝对产量来看, 随着种植年限延长, 残效则逐年下降。在分配施磷条件下, 残效基本随施磷量的增加而降低。施 P₂O₅300 kg/hm² 可基本满足 4 季冬小麦对磷的需求。因此, 利用磷肥残效时, 既要考虑它的增产效果, 更重要的是看对作物产量的影响程度, 这对合理经济施磷有重要意义。

(2) 磷肥的利用率随用量增加而降低, 单季利用率低, 累计利用率高, 施 $P20575 \sim 300 \text{ kg/hm}^2$ 时, 单季利用率为 $12~0\% \sim 4~3\%$, 累计利用率达 $25~0\% \sim 12~4\%$, 是首季利用率的 $2~1\sim 2~9$ 倍。

- [1] 张兴高,崔明九,武天云,等 旱塬土壤施肥培肥技术研究[A]. 王吉庆 陇东高原半湿润偏旱农业综合发展研究[M] 兰州:甘肃科学技术出版社,1995 148- 155
- [2] 山仑、等、黄土高原旱地农业的理论与实践[M],北京:科技出版社、1993

(上接第60页)

表 5 施用磷肥对剖面硝态氮累积率与氮素平衡的影响

施	肥量/(k	g · hm -	²) NO 3- N	氮肥利用率	/氮回收率/	亏缺率/
	P2O 5	N	累积率/%	%	%	%
	45	45	6 00	52 62	58 62	41. 38
		90	5. 76	65. 20	70.96	29. 04
		135	2 95	66 04	68 99	31. 01
	90	0	27. 43	42 33	69. 76	30 24
		45	4. 77	61. 19	65. 96	34. 04
		90	2 18	57. 70	59. 88	40 12
		135	6 56	53 42	59. 98	40 02
		180	6 03	58 37	64. 40	35. 60
	135	45	20 68	45. 31	65. 99	34. 01
		90	15. 65	54. 09	69. 74	30 26
		135	9. 76	51. 52	61. 28	38 72
	180	0	42 32	32 54	74. 86	25. 14
		90	17. 03	47. 26	64. 29	35. 71
_		180	9. 83	50.56	60. 39	39. 61

3 结论

长期试验表明, 黄土旱塬长期不平衡或过量施用氮肥,

土壤剖面中硝态氮的深层累积是不可避免的, 其累积数量、深度和累积率与氮磷施用量及搭配比例密切相关。硝态氮在土壤深层累积的深度通常在 60~cm 以下, 严重时可以超过 200~cm。因施肥组合方式的不同, 14~FE 0~C 200~cm 硝态氮累积率为 8~S%~C~31.0% , N~PM>N>N~P>M 。 如果氮磷肥按不同比例搭配, 在氮磷比例严重失调时, 硝态氮累积率剧增, 15~FE 年后最大累积率达到 42~3% (单施氮 $180~\text{kg/hm}^2~\text{处}$ 理)。试验表明, 土壤剖面 NO_3-N 的累积量与累积率一般随氮肥用量的增加而增加, 而且 NO_3-N 累积深度随氮肥用量的递增而加深。在 NO_3-N 严重累积的情况下, 配施磷肥可以明显的减少硝态氮的累积数量和累积率, 且随磷肥用量的增加而减幅增大。从土壤氮素平衡来看, 施氮量越大, 氮素利用率越低; 配施磷肥越多, 氮肥利用率越高。为了防止硝态氮的严重积累及其对环境的潜在威胁, 在生产上切实可行的措施就是氮磷肥合理配施。

参考文献:

- [1] Keeney, D.R. Nitrogen management for maximum efficiency and minimum pollution [A]. In: F.J. Stevenson (ed.), Nitrogen in Agricultural Soils [M]. Madison: Wis Am. Soc Of Agron Agronomy, 1982 605-949.
- [2] 朱兆良, 文启孝 中国土壤氮素[M] 南京: 江苏科学技术出版社, 1992 213- 249.
- [3] 张福珠, 熊先哲, 戴同顺 应用 N 研究土壤- 植物系统中氮素淋失动态[J] 环境科学, 1984, 5(1): 21-24
- [4] 王家玉, 王胜佳, 陈义 稻田土壤中氮素淋失的研究[J] 土壤学报, 1996, 33(1): 28-35.
- [5] 张国梁, 章申 农田氮素淋失研究进展[J] 土壤, 1998, 6: 291-297.
- [6] 鲁如坤、刘鸿翔,闻大中 我国典型地区农业生态系统养分循环和平衡研究[J] 土壤通报, 1996, 27(4): 45-51.
- [7] 郭胜利, 党廷辉, 郝明德 黄土高原沟壑区不同施肥条件下土壤剖面中矿质氮的分布特征[J]. 干旱地区农业研究, 2000, 18(1): 22- 27.
- [8] 樊军,郝明德,党廷辉 旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响[J]土壤与环境,2000,9(1):23-26